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Abstract
A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete

delay differential equation models is studied by focusing on Quartino’s extension to the Friberg transit compartment model

of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after

chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is

provided by considering a general number of transit compartments and introducing an extra parameter that allows for the

decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain

technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential

equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear

chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter

limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical

pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the

mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This mis-

specification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.

Keywords Granulopoiesis � Mathematical pharmacology � Delay differential equations � Bifurcation analyses �
Transit compartment models � Linear chain technique

Introduction

In the pharmaceutical sciences, the concept of lag time, or the

delay between the administration and the absorption of a drug,

is a well-established phenomenon which is often accounted for

[42]. Physiologically-based pharmacokinetic models
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incorporating absorption models like the ACAT or ADAM

[2, 25] were indeed conceived and developed in part to account

for the enterohepatic circulation that contributes to the delay in

drug concentrations in the blood after oral administration.

However, regardless of the administration of a xenobiotic,

various forms of delays are present throughout physiological

systems. In addition to pharmacokinetic lags, systems-level

delays play an important role in determining the pharmacody-

namic response to treatment. As examples, intracellular and

intrinsic viral delays contribute to more complicated viral load

decay in patients with human immunodeficiency virus being

treated with antiretroviral drugs [16], and the hematopoietic

system displays multiple delays along the pathways from the

pluripotent hematopoietic stem cells (HSCs) to terminally dif-

ferentiated circulating cells [31].

Granulopoiesis, the process of neutrophil production,

exhibits multiple delays and has been studied in depth owing

to the role neutrophils play in the innate (and adaptive)

immune response [32]. Neutropenia, a lack of neutrophils, is

a toxic side effect of chemotherapy and impacts heavily on

treatment success and overall survival outcomes [22, 43].

There is therefore an established interest in mathematical

models that can predict the response to chemotherapeutic

drugs [17, 20, 40] and accurately represent the feedback

mechanisms regulating neutrophil homeostasis [13, 26].

To maintain basal circulating neutrophil concentrations,

HSCs become multipotent progenitors in the bone marrow

before differentiating into the myeloid lineage on their way

to becoming circulating neutrophils. After commitment,

cells proliferate and undergo several divisions during a phase

where cell numbers increase exponentially. After prolifera-

tion, neutrophil progenitors no longer divide. Instead, they

grow in size and number of receptors before being seques-

tered into a marrow reservoir [39], where they either die

through apoptosis or transit into circulation [8]. Once they

exit from the bone marrow, neutrophils circulate very tran-

siently, with a half-removal time on the order of 7–10 h [48],

as they either rapidly die or marginate into tissues [39].

Granulopoiesis is controlled by various cytokines, of which

granulocyte colony-stimulating factor (G-CSF) is the prin-

cipal actor [49]. By binding to receptors on the neutrophil

membranes, G-CSF regulates the rate at which neutrophils

are released into circulation, and modulates upstream factors

(differentiation into the myeloid lineage, proliferation of

upstream neutrophil progenitors, speed of maturation) to

replenish and regulate the concentration of neutrophils in the

bone marrow reservoir. G-CSF is then internalised by the

neutrophils and removed from circulation. In the case of

elevated circulating concentrations, G-CSF is also cleared

via a linear, renal pathway [28] and these dual routes of

elimination are important determinants of the PKs of G-CSF

[13]. An overview of the process of neutrophil production is

given in Fig. 1.

Mathematical representations of granulopoiesis (and

other similar physiological delay systems) fall into three

classes: transit compartment models where delays are

represented via a chain of first-order ordinary differential

equations (ODEs), distributed delay systems where inte-

gro-differential equations represent a delay that takes a

range of values determined through some probability dis-

tribution [1, 7, 23, 44], or delay differential equation

(DDE) systems where the present state depends on past

states via fixed or state-dependent delays [5, 13, 17] (for

more detailed discussions on the various models used in

modelling hematopoiesis and chemotherapy-induced neu-

tropenia, see [36] and [12], respectively).

Here we focus on two models of granulopoiesis in par-

ticular: the Quartino model [38] and the Quantitative systems

pharmacology (QSP) model of Craig [13]. The Quartino

transit compartment ODE model accounts for the effects and

PKs of endogenous G-CSF and is an extension of the widely-

used Friberg model [19, 20], while the QSP granulopoiesis

model of [13] is a state-dependant delay DDE model that

incorporates the concentrations of unbound G-CSF and

G-CSF bound to its neutrophil receptors. We will show that

the Quartino model [38] can be reformulated as a distributed

DDE, which becomes a discrete-delay DDE in a certain

parameter limit. This reformulation of the Quartino model

leads to some additional insight on parameter choices and

will lead us to generalise this model.

Since the maintenance of homeostasis or the pathogenic

shift towards disease-states depends on the longterm beha-

viour of a given system’s steady states, stability is an integral

concept in physiology. In what follows, we will study the

stability of the steady states of these three major granu-

lopoiesis model-types (transit compartment, distributed and

discrete delay, and QSP) by demonstrating the relationships

and equivalencies between all three formalisms and ana-

lysing the resulting distributed delay model to provide a

better understanding of the role model selection plays within

a treatment context. Accordingly, we will discuss how model

choice impacts on the incorporation and delineation of the

effects of interindividual variability. We will also provide a

historical context for the origins of transit compartment

models from distributed delay models and DDEs.

Modelling granulopoiesis: three different
approaches to handling delays

Transit compartment model with endogenous
G-CSF

The Friberg model [20] is perhaps the most well-known

model of chemotherapy-induced myelosuppression in the

pharmaceutical sciences [12]. Five compartments are used
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to represent the HSCs and early progenitors, circulating

neutrophils, and the transit between the proliferative and

circulative states. A feedback mechanism on the rate of

proliferation determines the extent of myelosuppression of

the chemotherapeutic agent. The model has been shown to

generically represent a variety of chemotherapeutic drugs

[19] and has been widely adopted in PK/PD studies of anti-

cancer drugs. We write a generalised version of this model

as

dP

dt
¼ kPð1 � EDrugÞ

N0

NðtÞ

� �c
�ktr

� �
P

dT1

dt
¼ ktrP� aT1

dTj

dt
¼ aðTj�1 � TjÞ; j ¼ 2; . . .; n

dN

dt
¼ aTn � kcircN;

ð1Þ

which reduces to the Friberg model if we set kP ¼ ktr ¼ a

and n ¼ 3. Here, P is the concentration of proliferating

progenitors, Tj is the jth post-mitotic transit compartment,

and N is the circulating neutrophil concentration (all in

units of 109 cells/L), while kP is the rate of proliferation in

the progenitor cell pool, ktr and a are the transit rates

between the maturation compartments, and kcirc is the rate

of neutrophil exit from circulation (all in units of h-1).

An extension to the Friberg model, which we will refer

to as the Quartino model, is presented in [38] and models

the myelosuppressive effects of chemotherapy on progen-

itor and circulating neutrophils, the endogenous G-CSF

response, and the effect of the administration of a gluco-

corticoid to induce a rapid increase in G-CSF. A model

schematic is given in Fig. 2. For our purposes, we can

discount the administration of the glucocorticoid prior to
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Fig. 1 An overview of granulopoiesis. As with all blood cells,

neutrophils begin as hematopoietic stem cells (HSCs–orange circle)

in the bone marrow (pale yellow background), where they develop.

HSCs are capable of self-renewal and are subject to cell death (dashed

arrows). HSCs may also differentiate into one of the blood cell lines,

including the neutrophils (purple circles). After commitment to the

neutrophil lineage, cells undergo a period of proliferative expansion

after which they no longer divide. Post-mitotic neutrophils then

mature, growing in size and gaining receptors. At the end of the

maturation process, cells are then stored in the bone marrow reservoir

from which they egress to reach circulation (pale red background)

before removal (by margination or death). G-CSF acts to modulate the

rate of exit from the marrow reservoir, increase the rates of

maturation and proliferation, and to modulate the rate of differenti-

ation into the neutrophil lineage (G-CSF actions represented by blue

vertical arrows). Figure reproduced from: Craig [12] with the

permission of Wiley (Color figure online)
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chemotherapy and ignore the corresponding model terms.

A generalised version of the model is then given by

dP

dt
¼ P kPð1 � EDrugÞ

G

G0

� �c

�ktr
G

G0

� �b
 !

ð2aÞ

dT1

dt
¼ G

G0

� �b

ðktrP� aT1Þ ð2bÞ

dTj

dt
¼ a

G

G0

� �b

ðTj�1 � TjÞ; j ¼ 2; . . .; n ð2cÞ

dN

dt
¼ a

G

G0

� �b

Tn � kcircN ð2dÞ

dG

dt
¼ kin � ðke þ kANCNÞG; ð2eÞ

where G is the circulating G-CSF concentration (ng/L),

kANC is the neutrophil-dependent rate of G-CSF elimination

(h-1), ke is the G-CSF nonspecific elimination rate (h-1),

ðG=G0Þc is the feedback on the proliferation rate from

circulating G-CSF concentrations, and ðG=G0Þb reflects the

G-CSF feedback on the maturation rate.

In most of the current work we do not consider the

chemotherapeutic agent and set EDrug ¼ 0, unless other-

wise stated.

We let P0, N0 and G0 denote the homeostasis values of

P, N and G respectively, obtained by setting

dP

dt
¼ dTj

dt
¼ dN

dt
¼ dG

dt
¼ 0 ð3Þ

in Eq. (2). In both the Friberg and Quartino models, it is a

modelling assumption that

kP ¼ ktr: ð4Þ

The condition of Eq. (4) is required in the Friberg model

(Eq. 1) to ensure that N ¼ N0 at homeostasis, and in the

Quartino model (Eq. 2) to ensure that G ¼ G0 at home-

ostasis. If G0 were not the homeostasis value of G, it would

be hard to justify the ðG=G0Þb terms appearing throughout

the model, and the model ought to take a different form.

Consequently we enforce the condition Eq. (4) throughout,

and always assume that ktr ¼ kP as in [38].

To see why we generalise the model by including a new

parameter a, note that at homeostasis the rate of production

of proliferating cells, the rate that cells leave proliferation

to enter the first transit compartment, the rate they leave the

last transit compartment to enter circulation and the rate

that they leave circulation must all be equal. In both models

this results in

kPP0 ¼ ktrP0 ¼ kcircN0: ð5Þ

The production rate in Eq. (5) is completely independent of

the maturation time of the cells; provided cells both enter and

leave maturation at the rate given by Eq. (5), changing the

maturation time swould only change the total number of cells

GCSFcirc

γ

1
Blood

ANCcirc

kcirc
ktr

Proliferating
progenitor
cell pool

ktr

GCSF0

kprol (=ktr)

2 3
ktrktr

GCSFcirc

ke + kANC • ANCcirckin

Edrug = f (Θ,C drug )

Non-mitotic compartments

kcort
GCSFcort

GCSFcirc

β

GCSF0

ktr4

Fig. 2 The integrated G-CSF-myelosuppression model describing the

dynamics of endogenous G-CSF and neutrophils following

chemotherapy. For the myelosuppression model the parameters are

baseline neutrophil count (ANC0), mean maturation time (MMT = 5/

ktr), the half-life of neutrophils in circulation (t1=2circ
= ln(2)/kcirc), the

feedback parameters of G-CSF on neutrophil proliferation (c) and

transit time (b) and the drug related effect (Edrug). The estimated

parameters for the G-CSF turnover model are baseline G-CSF

(GCSF0), nonspecific elimination rate constant (ke) and ANC-

dependent elimination rate constant (kANC) and cortisol-induced G-

CSF release (DOSEcort) and the half-life of cortisol-induced G-CSF

release (t1=2cort
= lnð2Þ=kcort). Figure reproduced from: Quartino et al.

[38, p. 3396] with the permission of Springer
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that are in maturation (which is skPP0), but will not change

the production rate in Eq. (5). We will see below that at

homeostasis the maturation time s for both models is given by

s ¼ n

a
: ð6Þ

Fixing a ¼ ktr leads to two related modelling problems. First

if we regard a ¼ ktr as known then, since n is an integer,

Eq. (6) only allows for certain discrete values of the delay s.

On the other hand, if as is more usual we suppose that s is

known then choosing n an integer and imposing that a ¼ ktr
in Eq. (6) uniquely determines the value of ktr in Eq. (6),

which in turn determines the production rate in Eq. (5). But

we already noted that the production rate at homeostasis

kPP0 and the maturation time s are independent.

In Quartino [38] a mean maturation time, or the time it

takes cells to transit from the proliferative pool to the cir-

culation, is defined by MMT ¼ ðnþ 1Þ=ktr. Presumably the

authors counted n transit compartments plus one prolifera-

tion compartment. By showing the equivalence of the gen-

eralised Quartino model of Eq. (2) to a distributed DDE, we

will find both the mean and variance of the delay, and show

that even if a ¼ ktr the correct formula for the mean matu-

ration time should be MMT ¼ n=ktr, corresponding to

Eq. (6), and not the formula used in Quartino [38].

In the following sections we will consider general values

of the parameters a and n, but will take the values of the

remaining parameters from [38]; these values are tabulated

in Table 1.

To satisfy the homeostasis conditions of Eq. (3) we

obtain

Tj ¼
N0kcirc

a
; j ¼ 1; . . .; n; P0 ¼ N0kcirc

ktr
; ð7Þ

and the parameter constraint

kin ¼ G0ðke þ kANCN0Þ: ð8Þ

At homeostasis the total number of cells in the n maturation

compartments is N0kcircn=a. Dividing this by the

production rate given by Eq. (5) gives the average matu-

ration time s ¼ n=a as stated in Eq. (6).

If a ¼ ktr as in [38] then Tj ¼ P at steady state for all the

transit compartments. In [38] the model Eq. (2) is consid-

ered with initial conditions at time t ¼ 0 equal to the

steady-state values (which is natural for a chemotherapy

study before the chemotherapeutic agent is administered),

but we will consider the behaviour of the model for general

non-negative initial conditions.

The linear chain technique

The linear chain technique is used to convert some dis-

tributed delay differential equations (DDEs) into a corre-

sponding system of ordinary differential equations (ODEs),

or vice versa. The technique dates back at least to the work

of Vogel in the 1960s [46, 47], and first appears in the

English literature in the work of MacDonald [29, 30] who

called the method the linear chain trick. Most authors

continue to use that name, but we prefer linear chain

technique, because, as we will see, there is a true equiva-

lency between the differential equation systems, and no

trick is involved. It is usually more convenient to formulate

problems as ODEs for numerical simulation, but some-

times more convenient to formulate them as DDEs for

analysis. The linear chain technique is well-known and

used in population biology and mathematical epidemiol-

ogy, but is as yet not as well-known in other fields. The

method has been independently rediscovered several times

over the decades, being referred to as the fixed boxcartrain

method by Goudriaan [21], and recently used by

Krzyzanski [27] in a pharmaceutical sciences setting.

There are several variants on this technique, and descrip-

tions can be found in many places including [24, 30, 41],

but the simplest application is for a gamma distributed

delay, for which we will detail the steps here.

Distributed DDEs come in many varieties, but a rea-

sonably general form is

Table 1 Parameter values from

[38] for the parameters of

interest in this study

Parameter Description Units Typical estimate (% RSE)

N0 Baseline ANC 109 cells/L 3.53 (5)

ktr ¼ kP Rate of transit h�1 0.03759

c G-CSF feedback on progenitors – 0.444 (4)

b G-CSF feedback on maturing cells – 0.234 (8)

G0 Baseline G-CSF concentration ng/L 24.3 (8)

ke Non-saturable rate of G-CSF elimination h�1 0.592 (32)

kANC Rate of G-CSF neutrophil removal h/109 cells/L 5.64

kcirc Rate of neutrophil removal h�1 0.099

kin Rate of G-CSF production h�1 498.1792

The mean delay in Eq. (29) is given by s ¼ n=a, or s ¼ 106:4 h
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dN

dt
¼ f t;NðtÞ;

Z t

�1
PðsÞgpaðt � sÞds

� �

¼ f t;NðtÞ;
Z 1

0

Pðt � uÞgpaðuÞdu
� �

: ð9Þ

In simpler examples PðtÞ � NðtÞ, but, as is the case for the

models considered in this work, P(t) can also be a separate

variable defined by its own differential equation. The

function gpaðuÞ is a probability density withZ 1

0

gpaðuÞdu ¼ 1: ð10Þ

So, rather than the dynamics of N(t) being determined by

the current value of P(t), the integral distributes the effect

of P across its previous values. In this work we will restrict

attention to the gamma distribution, though other distri-

butions do arise, in particular the uniform distribution. We

write the probability density function gpa of the gamma

distribution as

gpaðtÞ ¼
aptp�1e�at

CðpÞ ; ð11Þ

where CðpÞ is the gamma function. When n is a positive

integer CðnÞ ¼ ðn� 1Þ!, and the gamma function gener-

alises the factorial function to real numbers p with CðpÞ ¼
ðp� 1ÞCðp� 1Þ for any p[ 0. The real positive parame-

ters a and p determine the shape and rate of the distribution

with the mean delay s (the delay equation equivalent of the

MMT) given by

s ¼ p=a; ð12Þ

and variance r2 ¼ p=a2. If p and a are taken to infinity with

their ratio s held constant then the variance decreases to

zero and the probability density function gpaðtÞ becomes

narrower and taller and approaches the d-function dðt � sÞ.
In this limit the distributed DDE Eq. (9) reduces to a dis-

crete DDE

dN

dt
¼ f ðt;NðtÞ;Pðt � sÞÞ; ð13Þ

so discrete DDEs can be thought of as a limiting case of

distributed DDEs. We will see below that when p ¼ n an

integer, we can rewrite a gamma distributed DDE as an

ODE, so gamma distributed DDEs provide a link between

ODEs and discrete DDE models.

Transforming transit compartment models
to gamma-distributed delay equations

The probability density function Eq. (11) has the property

that for p 6¼ 1

d

dt
gpaðtÞ ¼

ðp� 1Þaptp�2e�at

CðpÞ � apþ1tp�1e�at

CðpÞ

¼ a
ap�1tp�2e�at

Cðp� 1Þ � aptp�1e�at

CðpÞ

� �

¼ aðgp�1
a ðtÞ � gpaðtÞÞ: ð14Þ

While for p ¼ 1

d

dt
g1
aðtÞ ¼

d

dt
ðae�atÞ ¼ �ag1

aðtÞ: ð15Þ

Models of the form in Eqs. (9) and (11) can in principle be

considered for any real positive value of p, but in practice

nearly all authors only consider p ¼ n a positive integer

(one exception is [7]), because then Eqs. (14) and (15)

allow the distributed DDE to be reduced to an ODE. To do

this for j ¼ 1; . . .; n let

TjðtÞ ¼
Z t

�1
PðsÞgjaðt � sÞ ds ¼

Z 1

0

Pðt � uÞgjaðuÞ du:

ð16Þ

Then Eq. (9) can be rewritten as an ODE

dN

dt
¼ f t;NðtÞ; TnðtÞð Þ: ð17Þ

Differentiating Eq. (16), using Leibniz rule for j[ 1

(noting that gjað0Þ ¼ 0 for j[ 1) we obtain

dTj

dt
¼ PðtÞgjað0Þ þ

Z t

�1
PðsÞ d

dt
gjaðt � sÞ ds

¼
Z t

�1
PðsÞaðgj�1

a ðt � sÞ � gjaðt � sÞÞ ds

¼ aðTj�1ðtÞ � TjðtÞÞ; j ¼ f2; 3; . . .; ng; ð18Þ

while for j ¼ 1 (noting that g1
að0Þ ¼ a)

dT1

dt
¼ PðtÞg1

að0Þ þ
Z t

�1
PðsÞ d

dt
g1
aðt � sÞ ds

¼ aðPðtÞ � T1ðtÞÞ: ð19Þ

Together Eqs. (17), (18), and (19) redefine the (nonlinear)

distributed DDE in Eq. (9) as a system of nþ 1 ODEs.

General DDEs can be posed as infinite dimensional

dynamical systems, which introduces considerable mathe-

matical difficulties, so being able to reduce some DDE

models to finite-dimensional ODEs is mathematically very

advantageous.

To complete the relationship between the distributed

DDE (Eq. (9)) and the system of ODEs in Eqs. (17), (18),

and (19) we should take some care with the initial condi-

tions. The distributed DDE (Eq. 9) has infinite memory,

and so to solve as an initial value problem from time t ¼ 0

we need to define a history function P(t) for all t 6 0, so

that the right hand-side of Eq. (9) can be evaluated. With
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P(t) so defined, for the DDE and ODE reduction to have

equivalent solutions, by Eq. (16) the ODE must have initial

conditions

Tjð0Þ ¼
Z 0

�1
PðsÞgjað�sÞ ds ¼

Z 1

0

PðsÞgjaðsÞ ds j ¼ 1; . . .; n:

ð20Þ

If it is assumed that PðtÞ ¼ P0, a constant for all t 6 0 then,

using Eq. (10), we see that Eq. (20) reduces to

Tjð0Þ ¼ P0

Z 1

0

gjaðsÞ ds ¼ P0; j ¼ 1; . . .; n: ð21Þ

It is natural to ask if we can also go the other way; does

a solution of the system of ODEs Eqs. (17), (18), and (19),

define a solution of the distributed DDE in Eq. (9)? It

follows immediately from Eq. (21) that a solution of the

ODE system with initial conditions Pð0Þ ¼ Tjð0Þ for j ¼
1; . . .; n does define a solution of Eq. (9). The equivalence

for more general initial conditions for the ODE has also

been established: in that case the ODE initial conditions

define a finite number of constraints on the history function

P(t) for t 6 0, which do not uniquely define P(t), and the

ODE defines a solution of the distributed DDE Eq. (9) for

all choices of P(t) that satisfy the constraints [10, 30].

Gamma-distributed and discrete delay representations
of transit compartment granulopoiesis models

As established above, the linear chain technique can be

applied to establish the equivalence between transit com-

partment ODE models and corresponding distributed

DDEs. Consider first the distributed DDE system

dP

dt
¼ kPð1 � EDrugÞ

N0

NðtÞ

� �c
�ktr

� �
P

dN

dt
¼ �kcircN þ ktr

Z t

�1
PðsÞgnaðt � sÞds:

ð22Þ

We define TjðtÞ by

TjðtÞ ¼
Z t

�1

ktr

a
PðsÞgjaðt � sÞ ds; j ¼ 1; . . .; n; ð23Þ

which corresponds to Eq. (16) with ktrPðsÞ=a replacing

P(s). Writing the equation for N(t) as

dN

dt
¼ �kcircN þ a

Z t

�1

ktr

a
PðsÞgnaðt � sÞds; ð24Þ

and applying the linear chain technique we obtain the

generalised Friberg transition compartment model of

myelosuppression Eq. (1).

While it is necessary to set a ¼ ktr in Eq. (22) to recover

the model as stated in [20], Eq. (1) defines a transit com-

partment model for other values of a also, and both the

system of ODEs in Eq. (1) and the distributed DDE of

Eq. (22) can be considered for general values a[ 0.

The extended Quartino endogenous G-CSF model [38]

(Eq. 2) cannot be stated simply as a distributed DDE via

the linear chain technique. The maturation time in the

Quartino model instead of being constant is state-depen-

dent with the rate constants for the passage through each

transit compartment given by

a
GðtÞ
G0

� �b

;

which varies as G(t) varies; it reduces to the same value as

for the Friberg model only if GðtÞ ¼ G0.

To write the Quartino model (Eq. 2) as a distributed

DDE, we first remove the state-dependency of the delays

by rescaling time. Define a new time t̂ðtÞ by

dt̂

dt
¼ GðtÞ

G0

� �b

; t̂ð0Þ ¼ 0: ð25Þ

By Theorem 2 in the ESM, the right-hand side of Eq. (25)

is strictly positive for t[ 0 so dt̂

dt
[ 0 and the new time

variable t̂ðtÞ is a strictly monotonic increasing function of t.

Then we see that

dTj

dt̂
¼ dt

dt̂

dTj

dt
¼ G0

Gðt̂Þ

� �b

a
Gðt̂Þ
G0

� �b

ðTj�1 � TjÞ ¼ aðTj�1 � TjÞ:

Strictly speaking we should define new variables

eGðt̂Þ ¼ GðtÞ, but following common practice we suppress

the tildes and reuse the same variable names. Applying the

same time-rescaling to all the equations we rewrite the

Quartino model (Eq. 2) as

dP

dt̂
¼ kP

Gðt̂Þ
G0

� �c�b

� ktr

 !
Pðt̂Þ

dT1

dt̂
¼ ktrPðt̂Þ � aT1ðt̂Þ

dTj

dt̂
¼ aðTj�1ðt̂Þ � Tjðt̂ÞÞ; j ¼ 2; . . .; n

dN

dt̂
¼ aTnðt̂Þ �

G0

Gðt̂Þ

� �b

kcircNðt̂Þ

dG

dt̂
¼ G0

Gðt̂Þ

� �b�
kin � ðke þ kANCNðt̂ÞÞGðt̂Þ

�
:

ð26Þ

We refer to Eq. (26) as the time-rescaled Quartino model.

Since the time rescaling satisfies t̂ð0Þ ¼ 0, the initial con-

ditions for the Quartino model (Eq. 2) at t ¼ 0 and the

time-rescaled Quartino model (Eq. 26) at time t̂ ¼ 0 are the

same, and these two equations given equivalent solutions.

The time-rescaled Quartino model Eq. (26) has constant

transition rates between the transit compartments, and
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consequently we can apply the linear chain technique to

derive Eq. (26) from

dP

dt̂
¼ kP

Gðt̂Þ
G0

� �c�b

�ktr

 !
Pðt̂Þ

dN

dt̂
¼ � G0

Gðt̂Þ

� �b

kcircNðt̂Þ þ ktr

Z t̂

�1
PðsÞgnaðt̂ � sÞ ds

dG

dt̂
¼ G0

Gðt̂Þ

� �b�
kin � ðke þ kANCNðt̂ÞÞGðt̂Þ

�
;

ð27Þ

by letting

Tjðt̂Þ ¼
Z t̂

�1

ktr

a
PðsÞgjaðt̂ � sÞ ds; j ¼ 1; . . .; n: ð28Þ

To define an initial value problem for the distributed DDE of

Eq. (27) we need to specify N(0), G(0) and Pðt̂Þ for t̂ 6 0.

This in turn defines initial conditions for both the time-

rescaled Quartino model Eq. (26) and the Quartino model of

Eq. (2) with Tjð0Þ given by evaluating Eq. (28) with t̂ ¼ 0. If

Pðt̂Þ is constant for t̂ 6 0 then Eq. (28) implies that

Tjð0Þ ¼ ktrPð0Þ=a, so there is an immediate equivalence

between all three models for such initial conditions. Even if

the Quartino model Eq. (2) were considered with different

initial conditions, there is still a direct equivalence to the

time-rescaled Quartino model (Eq. 26) and to the distributed

DDE model (Eq. 27). Consequently we have three equivalent

forms of the same model, with a direct correspondence

between the solutions of the differential equation systems

Eqs. (2) and (26) and (27).

Recalling Eq. (12), the mean value of the distributed

delay in Eq. (27) is s ¼ n=a. The time rescaling Eq. (25) is

trivial at homeostasis when GðtÞ ¼ G0, so this also implies

that the mean maturation delay is s ¼ n=a in the Quartino

model Eq. (2).

Fixing a ¼ ktr would only allow a very granular control

of the mean delay in the ODE model by varying the integer

n. Mathematically it is more convenient to fix the delay

s[ 0 and use n and a to control the shape of the distri-

bution. For the distributed DDE model (Eq. 27) we do not

even need n to be an integer. Recalling Eq. (10), in the

limit as n ! 1 and a ! 1 with s ¼ n=a fixed, the dis-

tributed DDE (Eq. 27) reduces to the discrete DDE

dP

dt̂
¼ kP

Gðt̂Þ
G0

� �c�b

�ktr

 !
Pðt̂Þ

dN

dt̂
¼ � G0

Gðt̂Þ

� �b

kcircNðt̂Þ þ ktrPðt̂ � sÞ

dG

dt̂
¼ G0

Gðt̂Þ

� �b�
kin � ðke þ kANCNðt̂ÞÞGðt̂Þ

�
:

ð29Þ

We remark that in the discrete DDE Eq. (29) the delay s is

constant in the rescaled time-variable t̂, just as the (same)

mean delay s ¼ n=a is constant in the distributed DDE

Eq. (27). In contrast the mean maturation time aðtÞ in the

Quartino model of Eq. (2) varies with G(t) and satisfies

t̂ðt � aðtÞÞ ¼ t̂ðtÞ � s;

where t̂ðtÞ satisfies Eq. (25). If G is held constant (but not

necessarily equal to G0), this gives a mean maturation time

a in the Quartino model Eq. (2) of

a ¼ n

aðG=G0Þb
¼ s

ðG=G0Þb
:

For the case of time-varying G(t), the evolution of the

mean maturation delay aðtÞ is defined by the differential

Eq. (A2), which we derive in the ESM, where we also show

the similarities between this state-dependency and the

explicit state-dependency in the QSP model (Eq. 30). But,

in the current work, the time-rescaling Eq. (25) will be

sufficient for our purposes.

Since the system in Eq. (26) corresponds to the Quartino

model in Eq. (2) with time rescaled, positivity of solutions

is guaranteed by Theorem 2 in the ESM.

A QSP model of granulopoiesis and its regulation
by G-CSF

As previously mentioned, DDEs are frequently relied upon

to model granulopoiesis given the delays inherent to

hematopoiesis. Here we focus on the Quantitative Systems

Pharmacology model in [13], which has been shown to

account for the dynamics of neutrophil production and its

negative feedback relationship with G-CSF–both bound to

receptors on the surface of neutrophils and freely circu-

lating–in a variety of scenarios. The model is written as

d

dt
QðtÞ ¼ �

�
jðG1ðtÞÞ þ jd þ bðQðtÞÞ

�
QðtÞ

þ AQðtÞb Qðt � sQÞð ÞQðt � sQÞ ð30aÞ

d

dt
NRðtÞ ¼ ANðtÞjðG1ðt � sNðtÞÞÞ

� Qðt � sNðtÞÞ
VNMðG1ðtÞÞ

VNMðG1ðt � sNMðtÞÞÞ
�
�
cNR þ uNR

ðGBFðtÞÞ
�
NRðtÞ ð30bÞ

d

dt
NðtÞ ¼ uNR

ðGBFðtÞÞNRðtÞ � cNNðtÞ; ð30cÞ

d

dt
G1ðtÞ ¼ IGðtÞ þ Gprod � krenG1ðtÞ ð30dÞ

�k12ð½NRðtÞ þ NðtÞ�V � G2ðtÞÞG1ðtÞsG þ k21G2ðtÞ ð30eÞ
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d

dt
G2ðtÞ ¼ �kintG2ðtÞ þ k12

�
½NRðtÞ þ NðtÞ�V

� G2ðtÞ
�
G1ðtÞsG � k21G2ðtÞ: ð30fÞ

Here Q(t) is the concentration of HSCs (106 cells/kg),

NRðtÞ the concentration of neutrophils in the bone marrow

reservoir (109 cells/kg), N(t) the concentration of circulat-

ing neutrophils (109 cells/kg), G1ðtÞ the circulating G-CSF

concentration (ng/mL), and G2ðtÞ the bound G-CSF con-

centration (ng/mL). Here, and throughout, the superscript h

denotes the homeostasis value of a quantity. The QSP

model (Eq. 30) is subject to the initial conditions (ICs) and

history functions

QðsÞ ¼ u1ðsÞ for s 2 ½�sQ; 0�
NRð0Þ ¼ NR;0

Nð0Þ ¼ N0

G1ðsÞ ¼ u2ðsÞ for s 2 ½�s; 0�
G2ð0Þ ¼ G2;0;

ð31Þ

where u1;2ðtÞ 2 C0 and

s ¼ sup
t>0

sNðtÞ: ð32Þ

IGðtÞ models the administration of exogenous G-CSF. As

described in [13], the self-renewal bðQÞ and amplification

factor AQðtÞ of the HSCs are given by

bðQÞ ¼ fQ
hsQ2

hsQ2 þ QsQ
; AQðtÞ ¼ Ah

Q ¼ 2e�cQsQ ;

and the rate at which HSCs differentiate into neutrophil

precursors is determined by the circulating concentration of

G-CSF

jðG1Þ ¼ jh þ ðjh � jminÞ Gsj
1 � ðGh

1Þ
sj

Gsj
1 þ ðGh

1Þ
sj

� 	
:

The rate at which the neutrophil progenitors proliferate is

given by

gNPðG1ðtÞÞ ¼ ghNP þ ðghNP � gminNP
Þ bNP
Gh

1

G1ðtÞ � Gh
1

G1ðtÞ þ bNP

� �
;

ð33Þ

where sNP days is the time it takes for proliferation. After

exiting proliferation, cells mature with rate

VNMðG1ðtÞÞ ¼ 1 þ ðVmax � 1Þ G1ðtÞ � Gh
1

G1ðtÞ � Gh
1 þ bV

;

where the maximal age of maturing neutrophils is aNM .

Given VNMðG1ðtÞÞ depends on the circulating concentration

of G-CSF, the time it takes neutrophils to mature satisfies

Z t

t�sNMðtÞ
VNMðG1ðsÞÞds ¼ aNM ; ð34Þ

and the total time for the process of granulopoiesis is then

the sum of the time to completion of each process, given by

sNðtÞ ¼ sNP þ sNMðtÞ:

Maturing neutrophils are assumed to be subject to a con-

stant death rate cNM , and their amplification factor ANðtÞ is

given by the integral equation

ANðtÞ ¼ exp

Z t�sNMðtÞ

t�sN ðtÞ
gNPðG1ðsÞÞds� cNMsNMðtÞ

" #
: ð35Þ

The fraction of G-CSF bound to neutrophil receptors given

by

GBFðtÞ ¼
G2ðtÞ

V ½NRðtÞ þ NðtÞ� 2 ½0; 1�; Gh
BF ¼ Gh

2

V ½Nh
R þ Nh� :

regulates the rate with which cells exit the marrow reser-

voir as

uNR
ðGBFðtÞÞ ¼ uh

NR
þ ðumax

NR
� uh

NR
Þ GBFðtÞ � Gh

BF

GBFðtÞ � Gh
BF þ bG

:

Mature neutrophils die from the marrow reservoir with rate

cNR . Cells that transit into circulation are removed with

constant rate cN .

Proofs of the existence, uniqueness, positivity, and

boundedness of solutions to Eq. (30) are provided in the

ESM.

Stability analysis

We perform stability analyses of the models highlighted

above by linearising them about their equilibria and inves-

tigating the roots of the associated characteristic equations.

As in the methodology familiar to systems of ODEs, where

characteristic equations are polynomial, we will calculate the

parameter values for which the roots have positive real parts,

corresponding to an unstable equilibrium.

In general, the characteristic equation associated with an

arbitrary distribution is transcendental and possesses an

infinite number of roots. As we shall see, the advantage of

an integer-order gamma distribution is to yield a charac-

teristic equation which is also a polynomial, reflecting the

fact that the gamma distribution yields a system of ODEs.

In the context of comparing and contrasting the different

models, we obtain a ‘‘continuity’’ result of sorts as we

determine that approximation in distribution does lead to

approximation in stability diagrams (see [3] for a similar

continuity argument).
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Stability analysis for the Quartino endogenous
G-CSF model and related forms

The generalised Quartino model Eq. (2), has two steady

states. Assuming that ktr ¼ kP as in Eq. (4) for the reasons

already stated, and considering the model in the form

Eq. (41) with vector solution XðtÞ ¼ ðPðtÞ; T1ðtÞ; . . .;
TnðtÞ;NðtÞ;GðtÞÞ 2 Rn these are given by

X�
1 ¼ ½P; T1; . . .; Tn;N;G� ¼ 0; 0; . . .; 0; 0;

kin

ke

� 	
; ð36Þ

X�
2 ¼ kcircN0

ktr
;
kcircN0

a
; . . .;

kcircN0

a
;N0;G0

� 	
; ð37Þ

where N0 is given by Eq. (8). The time-rescaled Quartino

model (Eq. 26) has the same steady states X�
1 and X�

2, since

a monotonic rescaling of time does not affect equilibria.

The discrete and distributed Quartino DDE models have

related equilibria, but in fewer space dimensions, since

these models do not include transit compartments. Let

Yðt̂Þ ¼ ðPðt̂Þ;Nðt̂Þ;Gðt̂ÞÞ| 2 R3 denote the vector of solu-

tions of Eq. (27) or (29), then these steady states are given

by

Y�
1 ¼ 0; 0;

kin

ke

� 	
; ð38Þ

Y�
2 ¼ kcircN0

ktr
;N0;G0

� 	
: ð39Þ

If n is a positive integer the distributed DDE (Eq. 27) is

equivalent to the Quartino model (Eq. 2) and the steady

states Y�
1 and Y�

2 correspond exactly to X�
1 and X�

2 as

defined in Eqs. (36) and (37) for the same value of n, and

with the values of Tj following from Eq. (28). To study the

stability of X�
i and Y�

i , we construct characteristic equa-

tions for the Quartino endogenous G-CSF models.

Consider first the generalised Quartino model (Eq. 2).

Let

XðtÞ :¼ ðPðtÞ;T1ðtÞ; . . .; TnðtÞ;NðtÞ;GðtÞÞ| 2 Rnþ3 ð40Þ

be the vector of solutions so that Eq. (2) can be rewritten in

vector form as

dX

dt
¼ FðXÞ; ð41Þ

where FðXÞ represents the right hand side of the Quartino

model (Eq. 2). Let X� be an equilibrium of the system (that

is that FðX�Þ ¼ 0), then define Z ¼ XðtÞ � X� and let

JðX�Þ be the Jacobian of FðXÞ evaluated at X�

(JðXÞ ¼ dF=dX). Then linearising about X� we obtain

dZ

dt
¼ JðX�ÞZ; ð42Þ

where nonlinear terms of order OðkZk2Þ are neglected.

Seeking a nontrivial exponential solution ZðtÞ ¼ Cekt of

Eq. (42) with C 2 Rnþ3, a vector of constants, and k 2 C,

we obtain the characteristic equation

detðkI� JÞ ¼ 0; ð43Þ

where I 2 Rðnþ3Þ�ðnþ3Þ is the identity matrix. Evaluating

the determinant in Eq. (43) leads to the characteristic

equation, which is stated in Eq. (A15) in the Electronic

Supplementary Material. This gives a polynomial of degree

nþ 3 in k for the Quartino model Eq. (2), and a polynomial

of degree 7 if we set n ¼ 4, as in [38]. A steady state is

unstable if any of the roots of this polynomial have positive

real part.

The characteristic polynomial for the time rescaled

Quartino model is also a polynomial in k of degree nþ 3,

and actually has a simpler form than the characteristic

polynomial for Quartino model Eq. (2). But to derive this

characteristic polynomial it is convenient to first consider

the characteristic functions of the discrete DDE (Eq. 29)

and the distributed DDE model (Eq. 27).

With Yðt̂Þ defined as above, let Ys :¼ Yðt̂ � sÞ be the

vector of delayed solutions. Then we can rewrite Eq. (29)

as

dY

dt̂
¼ FðY;YsÞ; ð44Þ

in vector form. Similar to the ODE case, let FðY�;Y�Þ ¼ 0

be a generic steady state. Define the variables Z :¼ Y� Y�

and Zs :¼ Ys � Y� and denote the linearisation matrices of

Eq. (44) computed at ðY;YsÞ ¼ ðY�;Y�Þ by A and B.

Linearising Eq. (44) about Y� and using the variables Z

and Zs yields

dZ

dt̂
¼ AZþ BZs: ð45Þ

The linearisation matrices A and B from Eq. (45) are

calculated following Eq. (A22) in the ESM. Seeking a

nontrivial exponential solution ZðtÞ ¼ Cekt̂ for Eq. (45),

with constant C 2 R3 and k 2 C, we obtain the charac-

teristic equation

detðkI�A� e�ksBÞ ¼ 0; ð46Þ

where I is the identity matrix. Evaluating the determinant

in Eq. (46) gives the transcendental characteristic equation

k3 þ a2k
2 þ a1kþ a0 ¼ be�ks; ð47Þ

where the coefficients a2, a1, a0 and b are computed in

Eq. (A23) (see ESM).

In general Eq. (47) has infinitely many roots, corre-

sponding to the infinite dimensional nature of DDEs. The

treatment of these equations is made tractable because

although there can be infinitely many complex numbers k
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that satisfy Eq. (47), it is well known that for any real

number r there can only be finitely many solutions k with

ReðkÞ[ r (see for example Lemma 4.2 in [41]). To

determine stability we need to ascertain whether all the

roots have ReðkÞ\0.

Comparing the discrete DDE in Eq. (29) with the dis-

tributed DDE in Eq. (27), we see that they differ in only

one term. Thus the linearisation of the distributed DDE

(27) follows exactly the steps taken for the discrete DDE

(29). Then, following MacDonald [30], the characteristic

equation for the distributed DDE of Eq. (27) corresponds to

Eq. (47) with the term e�ks replaced by

GðkÞ ¼
Z 1

0

e�kugnaðuÞdu ¼ an

ðaþ kÞn ; ð48Þ

where GðkÞ is the Laplace transform of the gamma prob-

ability density function, and hence we obtain

k3 þ a2k
2 þ a1kþ a0 �

anb

ðaþ kÞn ¼ 0; ð49Þ

where the coefficients aj and b computed in Eq. (A23) in

the ESM are the same as those for Eq. (47). Notice that if

b ¼ 0 then Eqs. (47) and (49) both reduce to the same

cubic polynomial.

Equation (49) is the characteristic equation of both the

distributed DDE (Eq. 27) and the equivalent time-rescaled

Quartino ODE model (Eq. 26), and can be written as

ð1 þ k=aÞnðk3 þ a2k
2 þ a1kþ a0Þ � b ¼ 0; ð50Þ

a polynomial of degree nþ 3, for b 6¼ 0. The above

equation can be used to determine the stability of the

steady-states of these models. But since the time rescaling

Eq. (25) is monotonic this will also determine the stability

of the steady-states of the Quartino model (Eq. 2).

It is natural to think of the discrete DDE (Eq. 29) as the

limit as n ! 1 with a ¼ n=s of the distributed DDE

(Eq. 27), and indeed with a ¼ n=s we have

ð1 þ k=aÞn ¼ ð1 þ ks=nÞn ! eks as n ! 1; ð51Þ

so the characteristic Eq. (50) for the distributed DDE

approaches the characteristic Eq. (47) of the discrete DDE

as n ! 1.

With the characteristic equations at hand, we now state

the stability results for the Quartino endogenous G-CSF

model and related forms. The complete proof is provided in

the ESM and is sketched out here. We can also directly

derive stability results for the Quartino model for at least

the steady state X�
1, though the proofs are much more

involved; those results, along with the requisite proof of the

positivity of solutions, are provided in the ESM for

completeness.

Theorem 1 Provided the parameters satisfy the con-

straints (4) and (8)

1. For the distributed DDE in Eq. (27) and the discrete

DDE of Eq. (29) the steady state Y�
1 is locally

asymptotically stable if c\b and unstable if c[ b,
and the steady state Y�

2 is unstable if c\b.

2. For the Quartino model in Eq. (2) and the time

rescaled Quartino model in Eq. (26) the steady state

X�
1 is locally asymptotically stable if c\b and

unstable if c[ b, and the steady state X�
2 is unstable if

c\b.

Sketch of proof The DDEs considered here are examples

of retarded functional differential equations (RFDEs). For

RFDEs, it is a standard result that the stability of steady

states is determined by the linearization; see for example

Theorem 4.8 in [41]. Stability is then shown by considering

the characteristic equations. Y�
1 can be shown to be

unstable for c[ b by the intermediate value theorem, and

similarly for Y�
2 when c\b. The Routh-Hurwitz criteria

can be used to show the stability of Y�
1 when c\b. Results

for X�
j follow from those for Y�

j . h

For the standard parameters, as given in Table 1, we

have c[ b so Theorem 1 implies that the neutropenic

steady states X�
1 and Y�

1 are unstable in all these models.

Proving directly that the homeostatic steady states X�
2 and/

or Y�
2 are stable when c[ b is difficult, but we can com-

pute the roots of the characteristic equations, and these are

shown in Fig. 3. We see that all the roots are negative or

have negative real part and hence the homeostatic steady

states X�
2 and Y�

2 are indeed stable when c[ b. Moreover,

the characteristic roots for the time-rescaled transit com-

partment Quartino model converge to the characteristic

roots for the discrete DDE as n increases. Although the

steady state is stable for all the models, we see that it

becomes less stable as n increases, with the real part of the

characteristic values tending to increase with n. The phe-

nomenon of loss of stability for fixed delay s as n is

increased has long been known, but remains an area of

active interest [4, 7, 30]. However, when c ¼ b the model

is degenerate with the progenitor equation reducing to
dP
dt
¼ 0, so the change in stability observed in Theorem 1

depending on whether c[ b or c\b is not a bifurcation in

the usual sense.

Stability of the QSP model of granulopoiesis

Similar to the preceding analysis, let XðtÞ :¼
ðQðtÞ;NRðtÞ;NðtÞ;G1ðtÞ;G2ðtÞÞ| be the vector solution of

Eq. (30) and Xr :¼ Xðt � rÞ denote a vector of delayed

solutions. Then the DDE system defining the QSP model

(Eq. 30) can be rewritten in vector form as
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dX

dt
¼ FðX;XsQ ;XsN ;XsNM

Þ: ð52Þ

Parameters changes to the model lead to different steady

states in Eq. (52). Let the steady state computed at home-

ostasis be written as Xh � ðQh;Nh
R ;N

h;Gh
1;G

h
2Þ, and denote

a generic steady state by X� � ðQ�;N�
R ;N

�;G�
1;G

�
2Þ.

To linearize Eq. (52) around a steady state X� we define

the variables sðtÞ ¼ sNðtÞ � t and u ¼ sþ sðtÞ to rewrite

the amplification factor Eq. (35) as

ANðtÞ ¼ exp

Z sNP

0

gNPðG1ðu� sðtÞÞÞdu� cNMsNMðtÞ
� 	

:

ð53Þ

Thus we approximate the amplification factor Eq. (53)

through the linearisation of the proliferation function

Eq. (33) given by

gNPðG1Þ ¼ gNPðG
�
1Þ þ g0NPðG

�
1ÞðG1 � G�

1Þ þ OðjG1 � G�
1j

2Þ;
ð54Þ

where g0NP � dgNP=dG1. Further, since it does not affect the

local stability of the steady state [11], we freeze the state-

dependent delay at its steady state value

sNMðtÞ ¼ s�NM: ð55Þ

Using Eqs. (54) and (55) together with the distributed delay

variable defined by

~G1ðtÞ :¼
Z sNP

0

G1ðu� sðtÞÞ
sNP

du;

Eq. (53) becomes

~ANðtÞ ¼ exp g�NPsNP � cNMs
�
NM

þ g0NPðG
�
1ÞsNPð ~G1ðtÞ � G�

1Þ
h i

:

ð56Þ

As a consequence of the approximation in Eq. (56), we can

rewrite Eq. (52) as

dX

dt
¼ fðX;XsQ ;XsN ;XsNM

; ~XÞ; ð57Þ

where

~XðtÞ :¼
Z sNP

0

Xðu� sðtÞÞ
sNP

du:

Let X� be a generic steady state of Eq. (57), defined by

fðX�;X�;X�;X�;X�Þ ¼ 0. Define the variables

Z :¼ X� X�, Zr :¼ Xr � X� and ~Z :¼ ~X� X� and denote

the linearisation matrices of Eq. (57) with regards to X,

XsQ , XsN , XsNM
, Xs and computed at X�, respectively by A,

B, . . ., E. Linearising Eq. (57) about X� and using the

variables Z, Zr and ~Z yields

dZ

dt
¼ AZþ BZsQ þ CZsN þDZsNM

þ E ~Z: ð58Þ

The linearisation matrices A, B, . . ., E from Eq. (58) are

computed in Eq. (A26) and Eq. (A27) in the ESM. Seeking

a nontrivial exponential solution ZðtÞ ¼ Cekt for Eq. (58),

with constant C 2 R5 and k 2 C, we obtain the charac-

teristic equation

detðkI�A� e�ksQB� e�ks�NC� e
�ks�NMD� f ðkÞEÞ ¼ 0;

ð59Þ

where I is the identity matrix and

Re(λ)

I
m
(λ

)

n

λ

Re(λ)
Im(λ)

(a) (b)

Fig. 3 Convergence of the characteristic roots. Characteristic roots

for the distributed DDE (Eq. 27) at Y�
2 and the equivalent time-

rescaled Quartino model (Eq. 26) at X�
2 are both given by solutions of

Eq. (49). Characteristic roots transition from cyan to blue as n is

increased from 1 to 40 (see online version for colours). As n is

increased the roots are seen to converge to the characteristic roots at

Y�
2 of the discrete DDE (Eq. 29) which are given by Eq. (47). a In the

complex plane. Diamonds: Characteristic roots of Eq. (47); Dots:

Characteristic roots of Eq. (49) as n is varied. b Convergence of the

real and negative imaginary part of the rightmost characteristic root of

Eq. (49) to the corresponding root of Eq. (47) as n is increased (Color

figure online)
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f ðkÞ :¼ ðeksNP � 1Þ
ksNPe

ks�
N

¼ e
�ks�NM � e�ks�N

ksNP
: ð60Þ

See the calculations following Eq. (A26) and Eq. (A27) in

the ESM for the rearrangement of Eq. (59), and computa-

tion of the matrix terms and its determinant. The charac-

teristic roots, solutions k 2 C to Eq. (59), determine the

stability of the steady state X� from Eq. (52)/(58). To

evaluate the stability numerically, we write k ¼ rþ ix,

with r 2 R and x 2 R, and then compute the roots of

Eq. (59) in the ðr;xÞ-plane using the Matlab subroutine

fsolve [33]. As illustrated in Fig. 4, at homeostasis all the

characteristic roots k have negative real part, and so the

homeostatic steady state Xh ¼ ðQh;Nh
R ;N

h;Gh
1;G

h
2Þ,

defined by FðXh;Xh;Xh;XhÞ ¼ 0 in Eq. (52) is locally

asymptotically stable.

Bifurcation studies

Bifurcation analysis, or the study of the qualitative changes

to the behaviour of a system given a change to parameter

values, is a fundamental dynamical systems concept [34].

Accordingly, it can be a powerful tool in the life sciences to

shed light on underlying parameter relationships and better

understand the robustness of a system with regards to

stability.

Historically, bifurcation analysis has been applied to

study hematological pathologies and has provided valuable

insight into the origins of disorders like cyclic neutropenia,

a disease associated with dangerously low neutrophil

counts and mouth blistering [14] where a patient’s ANCs

oscillate with a period of around 21 days. These oscilla-

tions have been shown to correspond to a periodic orbit that

appears through a loss of stability after the system under-

goes a Hopf bifurcation [9, 18].

Bifurcations in the equivalent expressions
of the Quartino endogenous G-CSF model

We begin by investigating whether parameter changes in

the equivalent expressions of the Quartino endogenous G-

CSF model can lead their steady states X�
2 and Y�

2 to lose

stability. As in the homeostatic case, we let k ¼ rþ ix,

and compute the roots of the characteristic equations

Eqs. (47), (49) and (A19) using the Matlab subroutines

roots and fsolve [33]. We only consider the parameter

regime where c[ b as this includes the homeostatic steady

states and avoids the model degeneracy that occurs when

c ¼ b. Given that our aim is to compare the various

models, we will not perform an exhaustive study of the

effects of varying all the parameters here, but restrict

σ = Re(λ)

ω
=

I
m
(λ

)

Fig. 4 Roots of the characteristic equation Eq. (59) of the QSP

granulopoiesis model (Eq. 30) evaluated at the homeostasis steady

state Xh. All roots have negative real part in the complex plane
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Fig. 5 Hopf bifurcation curve ðs; cÞ and corresponding periods

computed varying values of the transit rate a. The maturation time

s for each value of a was calculated as s ¼ n=a, with n ¼ 4. Red

diamonds correspond to s ¼ 106:41 h, its homeostasis value, with

c ¼ 0:86766 and period of 18.32 days. Blue squares correspond to

s ¼ 123:34 h with c ¼ 0:78911 and period of 21.00 days. Remaining

parameters are as in Table 1. a Hopf bifurcation curve for X�
2 in the

(s, c) parameter space. b Period (in days) as a function of the

maturation time s for the Quartino model Eq. (2) (Color figure online)
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ourselves to changing s, c and n. Varying any of these

parameters does not change the steady state Y�
2, and also

leaves the corresponding elements of X�
2 unaltered. This

then only changes the size of the transit compartments.

Moreover, G ¼ G0 at these steady states, which implies

that there is no time re-scaling and t̂ ¼ t at the steady state

and its bifurcations.

Varying just c, with the remaining parameters kept at

their homeostasis values (see Table 1), we find that there is

a Hopf bifurcation at c ¼ 0:86766, with the resulting

periodic orbits having period 18.32 days at the bifurcation

point. A limit cycle with a period characteristic of cyclic

neutropenia [14] is found by varying both parameters. In

Fig. 5, we show the Hopf bifurcation curve for X�
2 in the

parameter space ðs; cÞ for the Quartino model (Eq. 2); the

steady state is stable in the region below the Hopf curve

and unstable otherwise.

In the same vein, we also computed bifurcation points

for the equilibrium X�
2 of distributed DDE model (Eq. (27))

using the characteristic Eq. (50) with n ¼ 4. As expected,

given that the this model is simply a trivial time-rescaling

of the Quartino model (Eq. 2) we obtain the same bifur-

cation points shown in Fig. 5.

In the previous example as a is varied the mean delay

s ¼ n=a also changes, so in Fig. 6 we illustrate the bifur-

cations as a, n and c are all varied under the constraint that

s ¼ n=a is kept constant at its homeostasis value. The Hopf

bifurcation curve for the steady state Y�
2 of the distributed

DDE model (Eq. 27) shown in Fig. 6 applies for all real

n[ 0 (with the blue squares illustrating the case of

n ¼ 1:5). The integer values of n also correspond to Hopf
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γ
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Fig. 6 Hopf bifurcation curve and corresponding periods. Value of c
and period of orbit at Hopf bifurcations as a and n are varied with

s ¼ n=a kept constant. The black dots indicate integer values of n and

correspond to bifurcations of X�
2 in the Quartino model, while the

underlying smooth black curve applies to Y�
2 for the distributed DDE

(Eq. 27) with integer or real n. Red diamonds correspond to n ¼ 4, its

homeostasis value, with c ¼ 0:86766 and period of 18.32 days. Blue

squares correspond to n ¼ 1:5 with c ¼ 1:69292 and period of 13.53

days. The horizontal lines correspond to the bifurcation point c ¼
0:69754 and the corresponding period 19.11 days for the discrete

DDE (Eq. 29). a Hopf bifurcation curve in (n, c) parameter space.

b Period (in days) as a function of n of bifurcating solution (Color

figure online)
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Fig. 7 Hopf bifurcation curve and corresponding periods for the

discrete DDE of Eq. (27). Red diamonds correspond to s at its

homeostasis value of 106.41 h with c ¼ 0:69754 and a period 19.11

days. Blue squares correspond to s ¼ 117:75 (h) with c ¼ 0:65534

and period 21.00 days. All other parameters are as in Table 1. a Hopf

bifurcation curve for Y�
2 in the (s, c) parameter space. b Period (in

days) as a function of s for the discrete DDE model Eq. (29) (Color

figure online)
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bifurcations of X�
2 of the Quartino model. The Hopf

bifurcation for the discrete DDE (Eq. 27) is also illustrated

and corresponds to the n ! 1 limit of the bifurcation

points for the Quartino model. The steady state is stable in

the region below the Hopf curve and unstable otherwise.

Figure 7 shows the Hopf bifurcation curve for Y�
2 in the

parameter space ðs; cÞ for the discrete DDE model Eq. (29).

The steady state is stable in the region below the Hopf

curve and unstable otherwise. Blue squares represent a

limit cycle with a period characteristic of cyclical neu-

tropenia. The similarity between Figs. 5 and 7 underlines

the equivalencies of the equivalent expressions of the

Quartino model (Eq. 2) and the discrete DDE (Eq. 29),

obtained by applying the linear chain technique.

Comparing the value of c reflected by the red squares of

Figs. 5, 6, and 7, we note that the region of stability for the

discrete DDE model b\c\0:69754 is smaller than that of

the distributed DDE with n ¼ 4 (and of the equivalent

ODE Quartino model), b\c\0:86766. Furthermore, in

the limit n ! 1 with a ¼ n=s or a ¼ ðnþ 1Þ=s, the

characteristic roots of the distributed DDE model Eq. (50)

converge to those of the discrete DDE model Eq. (47) when

holding s fixed, (see Fig. 6). This is expected since Eq. (50)

approaches Eq. (47) when n ! 1.

Bifurcations in the QSP model of granulopoiesis

We also studied whether parameter changes can lead the

steady state X� of QSP model (Eq. 30) to lose stability. We

observed that changes in parameters related to proliferation

and maturation lead to a loss of stability via a Hopf

bifurcation, as reflected in Table 2. Additionally, we veri-

fied that the steady state remains stable when the half-

maximal neutrophil proliferation constant bNP , the rate of

maturing neutrophil death cNM , or the rate of neutrophil

apoptosis in the bone marrow reservoir cNR is multiplied or

divided by a factor of 100.

An additional Hopf bifurcation point leading to an orbit

of period of 20.94 days was observed by changing four

parameters simultaneously: ghNP ¼ 1:7 days�1; bNP ¼ 2:0

ng/mL; gminNP
¼ 1:3 days�1; and sNP ¼ 6:1 days. Table 3

reports the loss of stability via a Hopf bifurcation when

pairs of parameters are varied in tandem.

It is worth noting that the granulopoietic system as

reflected in the QSP model is very robust around homeo-

static parameter values, and that physiologically realistic

scenarios may even preclude reaching the bifurcation val-

ues. For example, in the case of ghNP
, the artificial removal

of G-CSF from the body would be required to attain the

bifurcation point.

Model selection and the impact
of interindividual variability

When considering the time-rescaled Quartino model

(Eq. 26) and discrete delay model (Eq. 29), the impact of

interindividual variability (IIV) remains an open question.

Since the discrete delay model is the equivalent of taking n

to infinity in Eq. (26), we seek to quantify any altered

behaviours due to IIV as n is increased. Here we must

consider the PK/PD variability in both G-CSF and the

chemotherapeutic drug thus, in what follows, EDrug is no

Table 2 Hopf bifurcation points of the QSP model

Parameter (units) Description Homeostasis value Hopf bifurcation Period (days)

cQ (days�1) HSC rate of apoptosis 0.1 0.22791 36.69

ghNP (days�1) Proliferation rate at homeostasis 1.6647 7.4 60.31

gminNP
(days�1) Minimal rate of proliferation 1.4060 0.81 25.86

Vmax (–) Maximum maturation velocity 7.8669 93 5.20

bV (ng/mL) Maturation velocity 0.24610 0.0184 5.20

half-effect concentration

For each line the Hopf bifurcation point was computed by changing the respective parameter and following the solution k of Eq. (59) in the

ðr;xÞ-plane numerically, with the period given by 2p=x. The parameters values at homeostasis were obtained from [13]

Table 3 Hopf bifurcations points of the QSP model

Parameters (units) Hopf Bifurcation Period (days)

ðVmax; bV Þ (–,ng/mL) (30, 7.8) 5.20

ðVmax; bV Þ (–,ng/mL) (61, 16.1) 5.20

ðbNP ; gminNP
Þ (ng/mL,days�1) (0.065, 1.1) 25.86

ðghNP ; g
min
NP

Þ (days�1, ng/mL) (2, 1.1) 32.58

Hopf bifurcation points as in Table 2, but this time varying pairs of

parameters with the other parameters at homeostasis values from [13].

Vmax: Maximum maturation velocity; bV : Maturation velocity half-

effect concentration; bNP : Proliferation Michaelis-Menten constant;

gminNP
: Minimal rate of proliferation; ghNP : Proliferation rate at

homeostasis
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longer equal to 0. Instead, let Cdoc be the concentration of

docetaxel in the central compartment. As in [38], we

consider a linear PD relationship between the concentration

of docetaxel and its effect on the proliferation rates, so

EDrug = Slope � Cdoc, where Slope is the linear drug effect.

Using the docetaxel Pop-PK model of Bruno [6] and this

linear effects model, 30 virtual patients were generated for

both the generalised and time-rescaled Quartino models.

To ensure that we are comparing like models, s was kept

fixed as n was increased. In [38], the MMT for docetaxel

was found to be 133 h. As alluded to in the caption of

Table 1, we must apply a correction factor to account for

the misspecification of the mean maturation time as

MMT = ðnþ 1Þ=ktr instead of MMT = n / a. Accord-

ingly, we take s ¼ ð4=5ÞMMT ¼ ð4=5Þ � 133 ¼ 106:4,

where the factor (4/5) accounts for the de-coupling the

progenitor and maturing compartments. The initial condi-

tions for both models are given by Eq. (7) (Nð0Þ ¼ N0, and

Gð0Þ ¼ G0), and ktr was taken to be equal to kP, as in [38].

All other parameters are given as stated in Table 1.

We first verified that solutions to Eq. (2) were identical

to the solutions to Eq. (26) when the latter were rescaled

according to Eq. (25) (not shown). To visualise the impact

of increasing n, we compared the predictions of Eqs. (2) to

(29) (the case of n in the limit to infinity) using only the

typical parameter estimates. As seen in Fig. 8, as n ! 1,

solutions to the generalised Quartino model (and equiva-

lently, the time-rescaled Quartino and distributed delay

models) converge to that of the discrete delay. As n in-

creases, so too does the dimension of the resulting ODE

system for Eq. (2), which is not the case for the 3 equations

of Eq. (29).

We then compared the full Pop-PK predictions of

Eq. (2) for these 30 virtual patients when n ¼ 4 and

n ¼ 10. Keeping s fixed while increasing n increases the

variance r2 ¼ n=a2 of the gamma function in Eq. (11). We

can observe this effect in Fig. 9, where including IIV and

subsequently increasing n does not significantly affect the

mean solution but does increase the spread of the distri-

bution of solutions around the mean. Thus, for the

chemotherapy-induced neutropenia models, there is a

confounding relationship between interpatient variability in

PK/PD parameters and the estimated number of artificial

transit compartments.

Discussion

Mathematical pharmacology is increasingly recognised as

a quantitative methodology critical to understanding

pharmaceutical treatments and their efficacy while simul-

taneously raising compelling mathematical problems [45].

Using granulopoiesis as a backdrop, in the present paper

we have examined the connections between the familiar

PK/PD model formalism originally proposed by Friberg

[20] and adapted by Quartino [38] and a discrete delay

model of neutrophil production, connected via a distributed

delay model. Crucially, we have shown how the stability of

each model can be studied straightforwardly via this latter

distributed delay model, underlining the advantage of being

able to transfer between these equivalent expressions and

motivating the present analysis. To that end, we demon-

strated that solutions of the generalised (time-rescaled)

Quartino transit compartment model converge to that of the

time-rescaled discrete DDE model as n ! 1. By exam-

ining the impact of the inclusion of IIV on the solutions to

each of the models, we showed that variations related to

increases to n cannot be explained separately from
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Fig. 8 Neutrophil and G-CSF concentrations from the generalised

Quartino model of Eq. (2) and the equivalent time-rescaled discrete

delay model Eq. (29) for increasing values of n. Since the discrete delay

model in Eq. (29) is expressed in the time-rescaled t̂ðtÞ, we inverted

Eq. (25) and mapped the simulated solution back to t to directly compare

to Eq. (2). Dashed line: solution of discrete delay (Color figure online)
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presence of interindividual variability. Last, using our

previously published QSP model of the negative feedback

relationship between granulopoiesis and G-CSF, we have

identified several Hopf bifurcations through bifurcation

analysis, a technique not commonly applied in the classical

PK/PD analyses, and reviewed the impact the interpretation

of such bifurcations can have on our understanding of

pharmacological systems when used in concert with more

common sensitivity and variability analyses. We would

like to highlight two results in particular. First, the dis-

tributed delay model Eq. (27) exhibits wider regions of

stability around the steady state Y�
2 as compared to the

discrete DDE model Eq. (29), consistent with the result that

‘‘distributed delays are inherently more stable than the

same system with discrete delays’’ [7]. Second, we

identified Hopf bifurcations in the distributed and discrete

delay forms of the Quartino model with periods corre-

sponding to those in cyclic neutropenic patients by varying

the feedback parameter c and the delay s, demonstrating

how bifurcation analyses can be applied in mathematical

pharmacology to understand the pathogenesis towards

diseases.

Perhaps the most immediately consequential conclusion

drawn here is the incorrect definition of the mean tran-

sit/maturation time in the original and subsequent appli-

cations of the Friberg model. As previously mentioned, by

setting kP ¼ a ¼ ktr with GðtÞ ¼ G0, the MTT (sometimes

MMT) was originally expressed as ðnþ 1Þ=ktr. However,

we have shown that the mean delay of the distributed delay

model is constant and instead given by s ¼ n=a (which,
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Fig. 9 Impact of IIV on the

Quartino model Eq. (2) and its

equivalent forms Eq. (26) and

Eq. (27) for two different values

of n. PopPK parameters for 30

virtual patients were generated

following [6] and used as inputs

to Eq. (2). Solid blue lines:

individual predictions; black

dotted-dashed lines: 10th and

90th percentiles of predictions;

red dashed lines: median

prediction (Color figure online)
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when a ¼ ktr is then clearly given by n=ktr). Thus it is

mathematically incorrect to set MMT ¼ðnþ 1Þ=ktr as it

treats the proliferative pool as an additional transit com-

partment and this formulation cannot be recovered via the

linear chain technique. The generalised Quartino model

Eq. (2) explicitly decouples the maturation time and the

production rate of cells to eliminate this problem. Addi-

tionally, we highlighted the mathematical issue presented

when the transit rates are non-constant, as in [38], to the

derivation Eq. (14).

Further, since, in [20] and its various extensions and

applications, the parameter ktr is determined via the MMT,

the mean maturation time is fit and then the rate of transit

through each compartment is determined via the equation

MMT ¼ðnþ 1Þ=ktr . Mathematically, this introduces

additional difficulties since, in general, s ¼ n=a, where a is

not necessarily equal to ktr nor kP. Crucially, however,

setting MMT ¼ðnþ 1Þ=ktr leads to disparate estimates

for the maturation process, ranging, for example, from 102

h (n ¼ 6) in [37] to 210 h (n ¼ 4) in [38]. Although there

will be a wide range of MMTs during pathological con-

ditions and/or during treatment with exogenous cytokines,

the physiology of these changes are due to the cytokine

paradigm and the speeding up of the maturation process by

G-CSF [35]. In contrast, labelling studies report a much

narrower range of maturation times (153.6 h in [35] and

165.6 h in [15], for example) during homeostatic condi-

tions. Thus, differences in reported MMT arise not from a

wide range of mean maturing times across individuals but

are due instead to transient effects brought on by increased

(or decreased) G-CSF concentrations. Allowing the MMT

to vary widely in the context of chemotherapeutic treat-

ment is therefore better explained by fixing a value from

homeostatic studies and explicitly modelling the effects of

G-CSF.

We therefore emphasise that this work provides further

motivation to systematically incorporate, from first prin-

ciples, the physiological architecture yielding the proper

mathematical formulation of pharmacological models.
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