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DISTRIBUTED DELAY DIFFERENTIAL EQUATION
REPRESENTATIONS OF CYCLIC DIFFERENTIAL EQUATIONS\ast 

TYLER CASSIDY\dagger 

Abstract. Compartmental ordinary differential equation (ODE) models are used extensively
in mathematical biology. When transit between compartments occurs at a constant rate, the well-
known linear chain trick can be used to show that the ODE model is equivalent to an Erlang
distributed delay differential equation (DDE). Here, we demonstrate that compartmental models
with nonlinear transit rates and possibly delayed arguments are also equivalent to a scalar distributed
DDE. To illustrate the utility of these equivalences, we calculate the equilibria of the scalar DDE, and
compute the characteristic function---without calculating a determinant. We derive the equivalent
scalar DDE for two examples of models in mathematical biology and use the DDE formulation to
identify physiological processes that were otherwise hidden by the compartmental structure of the
ODE model.
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1. Introduction. Multicompartment models, where changes in one population
propagate through a chain of successive stages, have been used extensively in math-
ematical biology. Examples include inhibitory (and excitatory) neuronal feedback
loops [19, 21, 39, 45], cellular reproduction [2, 4, 7, 48, 49], enzymatic production
[1, 23, 60], infectious disease epidemiology [9, 29, 32, 44], and many others. It is well
established that, when the relationship between stages is linear, these compartmental
models ``hide"" delays [4, 6, 25, 51, 53]. Recently, there has been increased interest
in establishing the equivalence between models that explicitly include delays, like
renewal or distributed delay differential equations (DDEs), and multistage ordinary
differential equation (ODE) models [9, 13, 14, 15, 28].

In general, these multistage models follow a chainlike structure, with one popu-
lation influencing the next. When there is feedback between the first and last pop-
ulations, these chainlike structures close and become cyclic. Here, we formalize the
relationship between these cyclic differential equations and distributed DDEs. Specif-
ically, we establish the equivalence between a scalar distributed DDE and the general,
possibly delayed, cyclic differential equation

(1.1)
d

dt
xi(t) = fi

\biggl( \int \infty 

0

xi - 1(t - \varphi )Ki(\varphi )d\varphi 

\biggr) 
 - (\mu (xn(t)))xi(t) for i = 1, . . . , n,

where the indices i are taken mod n. Equation (1.1) includes the convolution integral
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term \int \infty 

0

xi(t - \varphi )Ki(\varphi )d\varphi ,

where each Ki(\varphi ) is a probability density function (PDF) that satisfies

Ki(\varphi ) \geqslant 0 \forall \varphi \geqslant 0 and

\int \infty 

0

Ki(\varphi )d\varphi = 1.

Thus, we study the relationship between scalar distributed DDEs and multistage
models that potentially include nonlinearities and delays. In particular, two specific
formulations of (1.1) have been extensively studied. First, by choosing Ki(\varphi ) =
\delta (\varphi  - \tau i), where, here and in what follows, \delta (\varphi ) is the Dirac delta distribution at
\varphi = 0, (1.1) becomes the system of cyclic discrete DDEs with delays \tau i given by

(1.2)
d

dt
xi(t) = fi (xi - 1(t - \tau i)) - (\mu (xn(t)))xi(t) for i = 1, . . . , n,

where, once again, the indices i are taken mod n.
The system (1.2) has been studied in depth by a number of authors [3, 30, 41].

Previously derived results include a Poincar\'e--Bendixson theorem for the discrete sys-
tem of DDEs (1.2) when \mu (xn(t)) = 0 [41], and the existence of periodic solutions
of (1.2) under modest assumptions on the specific feedback functions fi [3, 30]. We
consider a particular example of (1.2), used in the context of lac-operon dynamics
[60] in section 4.

Conversely, (1.1) is quite common in mathematical modeling in the delay free
case: after setting Ki(\varphi ) = \delta (\varphi ), the delay in (1.1) vanishes, and the system becomes
a multicompartment ODE. Then, the equivalence of an Erlang, or gamma type dis-
tribution with an integer shape parameter, distributed DDE, and a system of ODEs
has been known since at least the 1960s [53]. The linear chain trick, or linear chain
technique (LCT), establishes the equivalence between Erlang distributed DDEs and
transit compartment ODE models with a constant transition rate [36, 51]. Recently,
a number of authors have generalized the LCT to other distributions and model for-
mulations [14, 15, 28]. Often, these transit compartment ODE models take the form,
for some function F ,

(1.3)

\left\{             

d

dt
x1(t) =

\beta (xn(t))

V \ast  - V \ast x1(t),

d

dt
xi(t) = V \ast [xi - 1(t) - xi(t)] for i = 2, 3, . . . , n - 1,

d

dt
xn(t) = F (xn(t), V

\ast xn - 1(t)),

where, for the constant transit rate between compartments V \ast , we see that fi(xi - 1(t)) =
V \ast xi - 1(t) and \mu (xn(t))xi(t) = V \ast xi(t), while f1(xn(t)) = \beta (xn(t))/V

\ast acts as the re-
cruitment rate into the chain of transit compartments. The LCT consists of replacing
the transit compartment chain \{ xi(t)\} n - 1

i=1 with the distributed delay term

xn - 1(t) =

\int \infty 

0

\beta (xn(t - s))

V \ast gn - 1
V \ast (s)ds,(1.4)
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1744 TYLER CASSIDY

where gn - 1
V \ast (s) is the PDF of the gamma distribution with scale parameter V \ast and

shape parameter n - 1:

gn - 1
V \ast (s) =

(V \ast )n - 1sn - 2e - V \ast s

(n - 2)!
.

The linchpin of the LCT is the ability to write the functions \{ giV \ast (s)\} n - 1
i=1 as the

solution of a system of differential equations

d

ds
g1V \ast (s) =  - V \ast g1V \ast (s) and

d

ds
giV \ast (s) = V \ast [gi - 1

V \ast (s) - giV \ast (s)],

which is an explicit example of a sufficient condition to replace a distributed DDE by
a system of ODEs [20, 54], namely, that there exist functions \{ ai(t)\} n - 1

i=0 such that
the delay kernel K(t) satisfies

dn

dtn
K(t) +

n - 1\sum 
i=0

ai(t)
di

dti
K(t) = 0.

Often, particularly in the pharmaceutical sciences, the transit rate and clear-
ance terms are not constant, but rather determined through an external or environ-
mental variable, E(t), so fi(xi - 1(t), E(t)) = V (E(t))xi - 1(t) and \mu (xn(t), E(t)) =
V (E(t))xi(t) [4, 27, 34, 49]. Naively including a variable transit rate, V (E(t)) in (1.3)
gives

(1.5)

\left\{                   

d

dt
x1(t) =

\beta (xn(t))

V (E(t))
 - V (E(t))x1(t),

d

dt
xi(t) = V (E(t)) [xi - 1(t) - xi(t)] for i = 2, 3, . . . , n - 1,

d

dt
xn(t) = F (xn(t), V (E(t))xn - 1(t)).

Cassidy, Craig, and Humphries [6] established the equivalence between (1.5) and a
state dependent gamma distributed DDE by explicitly considering the age-structured
partial differential equation modeling the underlying maturation process. In the vari-
able transit rate case, where V \ast acts as a fixed scaling velocity to ensure that the
homeostatic ageing rate is unity, the distributed delay term (1.4) becomes

xn - 1(t) =

\int \infty 

0

gn - 1
V \ast 

\biggl( \int t

t - \varphi 

V (E(s))

V \ast ds

\biggr) 
\beta (xn(t - \varphi ))

V (E(t - \varphi ))
d\varphi .

While the results developed in this work translate to models that include external
control, we do not focus on state dependent distributed DDEs.

The model ingredients necessary to derive equations such as (1.3) or (1.5) were
considered in [14, 15, 25]. Broadly speaking, creating a model like (1.3) or (1.5)
requires determining the birth (or appearance) rate \beta (xn(t)), the death (or growth
rate) \mu (xn(t)), and the ageing (or transit rate) V (E(t)). These model ingredients are
precisely those catalogued by Diekmann, Gyllenberg, and Metz in their work on phys-
iologically structured equations [14, 15]. In brief, these model ingredients allow for the
development of a physiologically structured model. In their recent work, Diekmann,
Gyllenberg, and Metz derived necessary and sufficient criteria to determine if the,
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DISTRIBUTED DDES AND CYCLIC EQUATIONS 1745

typically infinite dimensional, physiologically structured models can be reduced to a
finite dimensional system of ODEs without the loss of relevant information [13, 14, 15].

The physiologically structured models considered by Diekmann, Gyllenberg, and
Metz offer a framework to study the role of individual level heterogeneity on popula-
tion level dynamics. These structured models allow for individuals to be continuously
distributed in ``trait"" (i.e., age, size, maturity,. . . ) space, rather than imposing the
artificial binning that would be necessary in the ODE case. In general, these struc-
tured population models describe the evolution of a density p over the set of possible
traits, which provides the physiological structure, \Omega . Often, the population distribu-
tion across the possible states determines the model output and is a density over \Omega ,
so p \in L1(\Omega ). It is then natural to consider the population level dynamics, given by
the time evolution of

N(t) =

\int 
\Omega 

\psi (x)p(t, x)dx.

The function \psi acts as a weight function in mapping the distribution of individual
states to the population, equivalently, the mapping L1(\Omega ) \rightarrow \BbbR k. Through careful
bookkeeping, it is sometimes possible to cast the evolution of N(t) as a delay, or
renewal, equation [16, 17]

N(t) = F (Nt),

where Nt(\theta ) = N(t + \theta ) for \theta \in ( - \infty , 0] and, for \rho > 0, solutions live in the natural
phase space [12]

L1,\rho =

\biggl\{ 
f

\bigm| \bigm| \bigm| \bigm| \int 0

 - \infty 
| f(\varphi )| e\rho \varphi d\varphi <\infty 

\biggr\} 
.

Here, we employ a similar bookkeeping strategy when considering the cyclic sys-
tem (1.1) to obtain a scalar distributed DDE. Effectively, by tracking the appearance
or recruitment rate into each compartment and measuring the expansion or contrac-
tion of each cohort, we write down a componentwise solution of the transit stages in
the cyclic differential equation (1.1) in section 2. Then, similarly to the LCT, we are
left with a scalar distributed DDE. However, unlike the classical LCT and existing
variants, our technique extends to models with both nonlinear clearance rates and
the delayed terms from (1.1). We then show how recasting the system of n DDEs
as the equivalent scalar distributed DDE simplifies model analysis by establishing
nonnegativity of solutions and giving an explicit expression for equilibria. We calcu-
late the characteristic equation by making extensive use of the chain rule for Fr\'echet
derivatives to replace the n \times n determinant typically involved in the calculation of
the characteristic function in section 3. Next, we consider two biological systems and
corresponding mathematical models which take the form of (1.1) in section 4. In
particular, these examples elucidate how the chainlike structure of (1.1) hides delayed
processes that are crucial in the physiological system, and offer the opportunity to
illustrate the general theory established in the preceding sections while demonstrat-
ing how the equivalence between a cyclic differential equation and a scalar distributed
DDE can be implemented in practice. We finish with a discussion of the mathematical
and biological advantages and limitations of our work in a brief conclusion.

2. Generalized LCT. In this section, we demonstrate how to reduce (1.1) to
a scalar distributed DDE. As mentioned, the theory for scalar DDEs is quite well
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1746 TYLER CASSIDY

developed, so this reduction enables simpler analysis of the equivalent system. We
note that the case of (1.1) with no explicit delays has been extensively studied and
catalogued by Diekmann, Gyllenberg, and Metz [13, 14, 15]. For ease of notation, we
separate our analysis into two cases: the first with only one explicit delay in (1.1) and
the second with multiple explicit delays. In what follows, we use xi,t to denote the
function segment xi,t(\theta ) = xi(t+ \theta ) for \theta \in ( - \infty , 0].

In the first case, to avoid cumbersome notation, we consider a specific case of
(1.1) with n = 3:

(2.1)

\left\{       
d

dt
x1(t) = f1

\biggl( \int \infty 

0

x3(t - \varphi )K1(\varphi )d\varphi 

\biggr) 
 - (\mu (x3(t)))x1(t)

d

dt
xi(t) = fi (xi - 1(t)) - \mu (x3(t))xi(t) for i = 2 and 3.

We note that the differential equation for x1(t) in (2.1) is linear in x1 and, oth-
erwise, is a possibly nonlinear function of x3,t. Specifically, the term

f1

\biggl( \int \infty 

0

x3(t - \varphi )K1(\varphi )d\varphi 

\biggr) 
,

which is independent of x1(t), can be thought of as the recruitment rate at time t,
while the factor \mu (x3(t)) gives the growth or contraction rate of x1(t) at time t. Then,
using Leibniz's rule, it is possible to verify that

x1(t) =

\int \infty 

0

f1

\biggl( \int \infty 

0

x3(t - s - \varphi )K1(\varphi )d\varphi 

\biggr) 
exp

\biggl( 
 - 
\int t

t - s

\mu (x3(u))du

\biggr) 
ds

=

\int t

 - \infty 
f1

\biggl( \int \infty 

0

x3(\sigma  - \varphi )K1(\varphi )d\varphi 

\biggr) 
exp

\biggl( 
 - 
\int t

\sigma 

\mu (x3(u))du

\biggr) 
d\sigma .

We note that x1(t) is entirely determined by x3(t) and that the expression

f1

\biggl( \int \infty 

0

x3(t - s - \varphi 1)K1(\varphi 1)d\varphi 1

\biggr) 
exp

\biggl( 
 - 
\int t

t - s

\mu (x3(u))du

\biggr) 
is the product of the recruitment into x1 at time t - s and the expansion or contraction,
determined by the sign of \mu , of that cohort between time t - s and t. Using the same
technique for x2(t), we obtain

x2(t) =

\int \infty 

0

f2 (x1(t - r)) exp

\biggl( 
 - 
\int t

t - r

\mu (x3(u))du

\biggr) 
dr

=

\int t

 - \infty 
f2 (x1(r)) exp

\biggl( 
 - 
\int t

r

\mu (x3(u))du

\biggr) 
dr.

Now, using the expression for x1(t), we see that

x2(t) =

\int t

 - \infty 
f2

\biggl[ \int r

 - \infty 
f1

\biggl( \int \infty 

0

x3(\sigma  - \varphi 1)K1(\varphi 1)d\varphi 1

\biggr) 
exp

\biggl( 
 - 
\int r

\sigma 

\mu (x3(u))du

\biggr) 
d\sigma 

\biggr] 
\times exp

\biggl( 
 - 
\int t

r

\mu (x3(u))du

\biggr) 
dr.
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Once again, we note that x2(t) is entirely determined by x3(t) alone, so we finally
obtain the scalar distributed DDE

d

dt
x3(t) = f3 (x2(t)) - (\mu (x3(t)))x3(t)

= f3

\biggl( \int t

 - \infty 
f2

\biggl[ \int r

 - \infty 
f1

\biggl( \int \infty 

0

x3(\sigma  - \varphi 1)K1(\varphi 1)d\varphi 1

\biggr) 
exp

\biggl( 
 - 
\int r

\sigma 

\mu (x3(u))du

\biggr) 
d\sigma 

\biggr] 
\times exp

\biggl( 
 - 
\int t

r

\mu (x3(u))du

\biggr) 
dr

\biggr) 
 - (\mu (x3(t)))x3(t).

We begin formalizing the relationship between the chain structure of (1.1) and a
scalar distributed DDE by partially solving the differential equations for the transit
compartments.

Lemma 2.1. Assume that [x1(t), x2(t), . . . , xn(t)] solves (1.1). Then xi(t) =
Fi(xi - 1,t, xn,t) for i \geqslant 2, where

Fi(xi - 1,t, xn,t) =

\int \infty 

0

fi

\biggl[ \int \infty 

0

xi - 1(t - s - \varphi )Ki(\varphi )d\varphi 

\biggr] 
exp

\biggl( 
 - 
\int t

t - s

\mu (xn(u))du

\biggr) 
ds.

Proof. The proof is a straightforward application of the arguments used in the
above treatment of (2.1).

We now show that, since x1(t) is entirely determined by xn,t through

x1(t) =

\int \infty 

0

f1

\biggl( \int \infty 

0

xn(t - s - \varphi )K1(\varphi )d\varphi 

\biggr) 
exp

\biggl( 
 - 
\int t

t - s

\mu (xn(u))du

\biggr) 
ds = G1(xn,t),

(2.2)

the cyclic nature of (1.1) allows us to write each intermediate variable xi as a function
of the final stage xn, as in the LCT.

Theorem 2.2. Let [x1(t), x2(t), . . . , xn(t)] satisfy (1.1). Then, xn(t) satisfies the
scalar distributed DDE

d

dt
xn(t) = fn

\biggl( \int \infty 

0

Gn - 1(xn(t - \varphi ))Kn(\varphi )d\varphi 

\biggr) 
 - (\mu (xn(t)))xn(t),

where the Gi are defined iteratively with G1(xn,t) in (2.2) and

Gi(xn,t) = Fi(Gi - 1(xn,t), xn,t) for i \geqslant 2.

Proof. Using (2.2) and Lemma 2.1, we write

x1(t) = G1(xn,t) and xi(t) = Fi(xi - 1,t, xn,t).

Then, as x1(t) = G1(xn,t), it follows that x2(t) = F2(G1(xn,t), xn,t) = G2(xn,t). Now,
we can repeat this for i = 3, . . . , n - 1, and obtain

xn - 1(t) = Fn - 1(xn - 2,t, xn,t) = Fn - 1(Gn - 2(xn,t), xn,t) = Gn - 1(xn,t),
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so that

d

dt
xn(t) = fn

\biggl( \int \infty 

0

xn - 1(t - \varphi )Kn(\varphi )d\varphi 

\biggr) 
 - (\mu (xn(t)))xn(t)

= fn

\biggl( \int \infty 

0

Gn - 1(xn(t - \varphi ))Kn(\varphi )d\varphi 

\biggr) 
 - (\mu (xn(t)))xn(t).

We have shown that the dynamics of the cyclic system (1.1) is determined by the
dynamics of the final stage xn(t). In what follows, for notational convenience, when
considering the scalar DDE reduction of the cyclic system in (1.1), we drop the index
n and instead write xn(t) = y(t), where

d

dt
y(t) = fn

\biggl( \int \infty 

0

Gn - 1(y(t - \varphi ))Kn(\varphi )d\varphi 

\biggr) 
 - (\mu (y(t))) y(t).

To complete the equivalence between the scalar distributed DDE and the system
of cyclic differential equations (1.1), we must map the initial data from one formulation
to the other. This mapping can be slightly complicated, as the dimensions of phase
space may be different in each formulation. For example, the classic LCT establishes
the equivalence between an Erlang distributed DDE with initial data in the corre-
sponding infinite dimensional probability space with a system of ODEs with finite
dimensional phase space. Thus, we discuss the implications of the slightly restrictive
general requirement following the theorem.

Theorem 2.3. There is a mapping between solutions \{ xi(t)\} ni=1 of the cyclic dif-
ferential equation (1.1) with initial data \{ \xi i(s)\} ni=1 for s < 0 and the scalar distributed
DDE for y(t) given by
(2.3)
d

dt
y(t) = fn

\biggl( \int \infty 

0

Gn - 1(y(t - \varphi ))Kn(\varphi )d\varphi 

\biggr) 
 - (\mu (y(t))) y(t), y(s) = \psi (s) for s < 0,

where Gn - 1(y(t)) is given in Theorem 2.2 if the initial data satisfy

\xi i(s) = Gi(\psi s) Ki-almost everywhere with \xi n(s) = \psi (s).(2.4)

Proof. Assume that \{ xi(t)\} ni=1 is a solution of (1.1) with initial data \{ \xi i(s)\} ni=1.
Then, we set y(t) = xn(t), and it follows from the construction of the Gi that y(t)
solve (2.3) with y(s) = \psi (s) for s < 0 with \psi (s) = \xi n(s).

Now, assume that y(t) solves (2.3) with y(s) = \psi (s). Then, Theorem 2.2 ensures
that xn(t) = y(t) and xi(t) = Gi(xn,t) for i = 2, 3, . . . , n  - 1 solve the differential
equation (1.1) with initial data given by (2.4).

Remark 2.4 (on the compatibility of initial data). In general, a system of DDEs
like (1.1) takes initial data in the infinite dimensional phase space [12]

C0,\rho , =

\biggl\{ 
f \in C0

\bigm| \bigm| \bigm| \bigm| lim
\varphi \rightarrow  - \infty 

f(\varphi )e\rho \varphi = 0

\biggr\} 
.

As the phase space of the cyclic differential formulation and the scalar distributed
DDE are both infinite dimensional, the strict condition on the history functions \xi i
in (2.4) is perhaps unsurprising. Nevertheless, while (2.4) appears restrictive, it is
directly linked to the cyclic structure of the system (1.1). Specifically, we have shown
that the dynamics of (1.1) are driven by the final stage, and (2.4) encodes this de-
pendence in the history of the system by enforcing that the initial data follow this
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relationship. In practice, the modeler needs only to determine the history of the final
stage---which is the stage that drives the dynamics of the entire system---and then
read off the corresponding history of the remaining n  - 1 compartments from (2.4).
When considering biological or physical systems, this corresponds to assuming that
perturbations (such as therapies or other interventions) to the cyclic structure of the
system do not occur in the past, and is satisfied in many (if not most) models [4, 9, 34].

A specific version of the constraint (2.4) appears in the transit compartment case
where (1.1) does not include explicit delays, so Ki(\varphi ) = \delta (\varphi ). In this case, the initial
data are the vector [\xi 01 , . . . , \xi 

0
n] \in \BbbR n and the equivalent constraint to (2.4) appears

throughout the literature; setting \xi 0i = Gi(\psi 0) maps a given history function \psi to the
initial conditions \xi 0i [9, 13, 51]. The inverse mapping is more delicate. For arbitrary
[\xi 01 , . . . , \xi 

0
n], we must construct a function \psi such that \xi 0i = Gi(\psi 0) holds. In general,

\xi 0i must belong to the range of Gi but deriving more specific conditions is model
dependent. However, in models similar to the classic transit compartment case where
Ki(\varphi ) = \delta (\varphi ) and each fi is linear, then it is possible to construct infinitely many
such \psi for arbitrary [\xi 01 , . . . , \xi 

0
n] [7].

3. Properties of the scalar distributed DDE. Equation (1.1) has been ex-
tensively studied in both the discrete delay case, where Ki(s) = \delta (s - \tau i), and the no
delay case where Ki(s) = \delta (s) [3, 30, 41]. As we are primarily interested in biolog-
ical systems exhibiting a cyclic nature, we begin by demonstrating that, for modest
assumptions on the functions fi, solutions of (1.1) evolving from nonnegative initial
data remain nonnegative.

Proposition 3.1. Assume that \mu is bounded above so \mu (y) \leqslant \mu max and that the
initial data \xi n satisfy\int 0

 - \infty 
\xi n(0 - \varphi )Ki(\varphi )d\varphi > 0 for i = 1, 2, . . . , n

with \xi n(0) \geqslant 0. Further, assume that each fi satisfies

fi(x) > 0 if x > 0 and fi(0) = 0, i = 1, 2, . . . , n.

Then, the solution of the IVP (2.3) satisfies y(t) \geqslant 0 for all t > 0.

Proof. To begin, we note that if Gn - 1(yt) \geqslant 0 Kn-almost everywhere, then

d

dt
y(t) \geqslant  - \mu (y(t))y(t) \geqslant  - \mu maxy(t)

and Gronwall's inequality gives

y(t) \geqslant y(0) exp ( - \mu maxt) \geqslant 0.

Therefore, to establish the claim, it is sufficient to show that Gn - 1(yt) \geqslant 0. From

Gi(yt) = Fi(Gi - 1(yt), yt)

=

\int \infty 

0

fi

\biggl[ \int \infty 

0

Gi - 1(yt - s - \varphi )Ki(\varphi )d\varphi 

\biggr] 
exp

\biggl( 
 - 
\int t

t - s

\mu (y(u))du

\biggr) 
ds,

and the assumption on fi, if Gi - 1(yt) \geqslant 0 Ki-almost everywhere, then Gi(yt) \geqslant 0.
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Now, consider

G1(y0) =

\int \infty 

0

f1

\biggl( \int \infty 

0

\xi n(0 - s - \varphi )K1(\varphi )d\varphi 

\biggr) 
exp

\biggl( 
 - 
\int 0

 - s

\mu (\xi n(u))du

\biggr) 
ds,

which is strictly positive by the assumptions on f1 and \xi n, and note that if yt \geqslant 0,
then G1(yt) \geqslant 0. We consider two distinct cases.

Case I. Assume that \xi n(0) > 0, and let t\ast be the first time such that y(t\ast ) = 0.
Then, for s \in [0, t\ast ], y(s) \geqslant 0 and we obtain Gi(ys) \geqslant 0. Then, for t \in [0, t\ast ], we have

d

dt
y(t) \geqslant  - \mu maxy(t),

and Gronwall's inequality gives

0 = y(t\ast ) \geqslant \xi n(0) exp( - \mu maxt
\ast ) > 0,

which is a contradiction so no t\ast can exist.
Case II. Assume that \xi n(0) = 0. Now, if Gn - 1 = 0 Kn-almost everywhere for all

t > 0, then y = 0 is the solution of the differential equation. Alternatively, let \^t be
the first time such that \int \infty 

0

Gn - 1(y\^t - \varphi )Kn(\varphi )d\varphi > 0,

so

d

dt
y(t)

\bigm| \bigm| \bigm| \bigm| 
t=\^t

= fn

\biggl( \int \infty 

0

Gn - 1(y\^t - \varphi )Kn(\varphi )d\varphi 

\biggr) 
> 0,

so y becomes positive at time \^t and we return to Case I.

After establishing a mathematical model, a first step is often the study of equilib-
ria. In (1.1), an equilibrium solution is a vector of constant functions [x\ast 1, x

\ast 
2, . . . , x

\ast 
n]

such that\biggl[ 
d

dt
x1(t),

d

dt
x2(t), . . . ,

d

dt
xn(t)

\biggr] \bigm| \bigm| \bigm| \bigm| 
[x1(t),...,xn(t)]=[x\ast 

1 ,...,x
\ast 
n]

= [0, 0, . . . , 0].

Consequently, calculating the equilibrium solution involves simultaneously finding the
zeros of n nonlinear multivariate functions. This calculation is simplified by the
fact that (1.1) admits a Jacobian matrix with zeroes below the first subdiagonal.
The Jacobian is thus an upper Hessenberg matrix and is particularly amenable to
iterative solvers such as Newton's method despite the nonlinearities present in (1.1)
[52]. Conversely, equilibria y\ast of (2.3) satisfy the single variable equation

(3.1) 0 = fn (Gn - 1(y
\ast )) - \mu (y\ast )y\ast .

In the case of (3.1), we can use techniques from single variable calculus such as the
intermediate and mean value theorems to analytically establish the existence and
uniqueness of an equilibrium solution. As (1.1) and (2.3) are equivalent, we can then
exploit the favorable Hessenberg structure of the Jacobian to numerically calculate
the equilibrium values.

We define the equilibrium clearance rate by

\mu \ast = \mu (y\ast ),(3.2)
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and returning to the definition of Gi(y
\ast ), we calculate

G1(y
\ast ) =

\int \infty 

0

f1

\biggl( \int \infty 

0

y\ast K1(\varphi )d\varphi 

\biggr) 
exp ( - \mu \ast s) ds =

f1(y
\ast )

\mu \ast 

and

Gi(y
\ast ) =

\int \infty 

0

fi

\biggl[ \int \infty 

0

Gi - 1(y
\ast )Ki(\varphi )d\varphi 

\biggr] 
exp ( - \mu \ast s) ds

=
fi(Gi - 1(y

\ast ))

\mu \ast =
fi
\mu \ast \circ fi - 1

\mu \ast \circ \cdot \cdot \cdot \circ f1(y
\ast )

\mu \ast .

We note that fi(x
\ast 
i - 1)/\mu 

\ast = fi(Gi - 1(y
\ast ))/\mu \ast is precisely the term that would be

obtained by solving (1.1) for the n different components of an equilibrium solution.

3.1. Characteristic function of the scalar distributed DDE. Once an
equilibrium solution has been found, often the next step is to study the local stability
of the equilibrium. As shown by Diekmann and Gyllenberg [12], the local stability of
an equilibrium y\ast is determined via the position of zeros of the characteristic function.
For cyclic systems (1.1) of n DDEs given by

d

dt
u(t) = F (u(t), ut),

the characteristic function is determined by solving a transcendental eigenvalue prob-
lem arising from the n\times n determinant

det [\lambda I  - A - \scrL [B](\lambda )] ,

where A and B are the Fr\'echet derivatives of F with respect to u and ut evaluated at
the equilibrium point u\ast and \scrL [B](\lambda ) denotes the Laplace transform of B evaluated
at \lambda . From the cyclic structure of (1.1), the Jacobian matrix A+\scrL [B](\lambda ) is an upper
Hessenberg matrix, where \scrL [B](\lambda ) involves the calculation of a Fr\'echet derivative for
each delayed term on the right-hand side of (1.1). Many efficient numerical methods
exist for matrices with this special structure and the determinant of A+\scrL [B](\lambda ) can
be expressed analytically as a recursive relationship by expanding the matrix along
the final column [52]. However, if, as in the model of white blood cell production
considered in section 4.2, modelers wish to vary the number of compartments n, then
the recursive definition only allows for limited carryover from case to case. Further,
the stability of an equilibrium is determined by the solutions of a nonlinear eigenvalue
problem due to the dependence \scrL [B](\lambda ) on \lambda (which is typically not polynomial in
\lambda ), so in both the system and scalar case, the eigenvalue problem is often numerically
solved by Newton iteration and without exploiting any possible decompositions of
A+ \scrL [B](\lambda ).

We now demonstrate how the reduced scalar distributed DDE can simplify the
calculation of the characteristic equation. Assume that y\ast solves (3.1) and \mu \ast is given
by (3.2), so

fn (Gn - 1(y
\ast )) = \mu \ast y\ast ,

and define z(t) = y(t) - y\ast with

d

dt
z(t) = fn

\biggl( \int \infty 

0

Gn - 1(y(t - \varphi ))Kn(\varphi )d\varphi 

\biggr) 
 - \mu (y(t))y(t)

= fn

\biggl( \int \infty 

0

Gn - 1(y
\ast + z(t - \varphi ))d\varphi 

\biggr) 
 - \mu (y\ast + z(t))(y\ast + z(t)).(3.3)
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To complete the linearization, we first consider nondelayed arguments of the right-
hand side of (3.3) with linear approximation

\mu (y\ast + z(t))(y\ast + z(t)) = \mu \ast y\ast + \mu \ast z(t) + \mu \prime (y\ast )z(t)y\ast +\scrO (z2).

We now turn to the delayed argument in (3.3), and must compute the Fr\'echet deriv-
ative of the operator H that maps \psi \in C0,\rho :

H : \psi (t) \rightarrow fn

\biggl( \int \infty 

0

Gn - 1(\psi (t - \varphi ))Kn(\varphi )d\varphi 

\biggr) 
.

The chain rule for Fr\'echet derivatives gives

DH(\psi ) = f \prime n(Gn - 1(\psi ))DGn - 1(\psi )

= f \prime n(Gn - 1(\psi ))DGn - 1(Gn - 2(\psi )) . . . DG2(G1(\psi ))DG1(\psi ).

Now, expanding G1(y
\ast + \psi ) about y\ast gives

DG1(y
\ast )\psi (t) =

\int \infty 

0

f \prime 1(y
\ast )

\biggl[ \int \infty 

0

\psi (t - s - \varphi )K1(\varphi )d\varphi 

\biggr] 
e - \mu \ast sds

+

\int \infty 

0

e - \mu \ast sf1(y
\ast )

\biggl[ \int t

t - s

\mu \prime (y\ast )\psi (x)dx

\biggr] 
ds

and after setting \psi (t) = Ce\lambda t, we get

DG1(\psi (t)) = \scrL [K1](\lambda )

\biggl( 
f \prime 1(y

\ast )

\mu \ast + \lambda 

\biggr) 
Ce\lambda t

+ \mu \prime (y\ast )f1(y
\ast )

\biggl[ \int \infty 

0

e - \mu \ast s

\biggl( 
Ce\lambda t  - Ce\lambda (t - s)

\lambda 

\biggr) 
ds

\biggr] 
= \scrL [K1](\lambda )

\biggl( 
f \prime 1(y

\ast )

\mu \ast + \lambda 

\biggr) 
Ce\lambda t + \mu \prime (y\ast )f1(y

\ast )

\biggl( 
1

\mu \ast  - 1

\mu \ast + \lambda 

\biggr) 
Ce\lambda t

\lambda 

=

\biggl( 
\scrL [K1](\lambda )

\biggl( 
f \prime 1(y

\ast )

\mu \ast + \lambda 

\biggr) 
+
\mu \prime (y\ast )f1(y

\ast )

\mu \ast (\mu \ast + \lambda )

\biggr) 
\psi (t).

As the above calculation holds for i = 2, 3, . . . , n  - 1, it follows from induction
that

DH(y\ast )\psi = f \prime n(Gn - 1(y
\ast ))

n - 1\prod 
i=1

\biggl( 
\scrL [Ki](\lambda )

\biggl( 
f \prime i(Gi - 1(y

\ast ))

\mu \ast + \lambda 

\biggr) 
+
\mu \prime (y\ast )fi(Gi - 1(y

\ast ))

\mu \ast (\mu \ast + \lambda )

\biggr) 
\psi ,

where \psi (t) = Ce\lambda t. Then, z(t) = y(t) - y\ast satisfies the linear differential equation

d

dt
z(t) = DH(y\ast )z  - [\mu \ast z(t) + \mu \prime (y\ast )z(t)y\ast ]

which, using the ansatz z = Ce\lambda t and the resulting expression for DH, becomes

\lambda z(t) = f \prime n(Gn - 1(y
\ast ))

n - 1\prod 
i=1

\biggl( 
\scrL [Ki](\lambda )

\biggl( 
f \prime i(Gi - 1(y

\ast ))

\mu \ast + \lambda 

\biggr) 
+
\mu \prime (y\ast )fi(Gi - 1(y

\ast ))

\mu \ast (\mu \ast + \lambda )

\biggr) 
z(t)

 - [\mu \ast + \mu \prime (y\ast )y\ast ] z(t).
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Cancelling the z(t) terms gives the characteristic equation

\lambda = f \prime n(Gn - 1(y
\ast ))

n - 1\prod 
i=1

\biggl( 
\scrL [Ki](\lambda )

\biggl( 
f \prime i(Gi - 1(y

\ast ))

\mu \ast + \lambda 

\biggr) 
+
\mu \prime (y\ast )fi(Gi - 1(y

\ast ))

\mu \ast (\mu \ast + \lambda )

\biggr) 
(3.4)

 - [\mu \ast + \mu \prime (y\ast )y\ast ] ,(3.5)

whose roots can be determined using singe variable Newton iteration. Further, we note
that the Laplace transforms are of the delay kernels Ki. These Laplace transforms are
precisely the moment generating the functions of the random variable with density
Ki and are known for most common kernels.

While these computations are cumbersome due to the notation involved, if we were
to add an additional stage to (1.1) as in the model of white blood cells mentioned
earlier and analyzed in section 4.2, updating the characteristic equation (3.5) would be
straightforward. In particular, we avoid calculating an (n+1)\times (n+1) determinant,
and simply multiply one extra factor in the product. In section 4, we illustrate the
simplicity of calculating the characteristic equation of the scalar distributed DDE for
equations arising in biological modeling.

In general, expanding the product of Laplace transforms yields n different con-
volutions. In many biological examples, the growth or clearance rate is not state
dependent, so \mu \prime (y\ast ) = 0 and the product in (3.5) becomes

n - 1\prod 
i=1

\scrL [Ki](\lambda )

\biggl( 
f \prime i(Gi - 1(y

\ast ))

\mu \ast + \lambda 

\biggr) 
= \scrL [K1 \ast K2 \ast \cdot \cdot \cdot \ast Kn - 1](\lambda )

n - 1\prod 
i=1

\biggl( 
f \prime i(Gi - 1(y

\ast ))

\lambda + \mu \ast 

\biggr) 
.

The convolution of the PDFs Ki represents the concatenation of the delayed processes
wherein changes in x1 propagate to xn in the cyclic differential equation formulation
given by (1.1). As the densities Ki(\varphi ) are only defined for \varphi > 0, the convolution
of Laplace transforms is the moment generating function for the random variable
modeling the time delay between the first and the nth compartment. As the sojourn
times in each stage are independent, this random variable is the sum of the random
variables defining the sojourn time in each stage. Consequently, the mean delay
between the first and nth compartment is precisely the sum of the mean sojourn
times in each compartment, as would be expected. Consequently, this form of the
characteristic equation emphasizes the concatenation of delayed processes modeled by
the system of cyclic differential equations (1.1), and allows modelers to both identify
otherwise hidden delayed processes and ensure that the delays are consistent between
the model and experimental system. For completeness, we note that this term is
present in the more general case where \mu \prime (y\ast ) \not = 0.

4. Examples. The form of (1.1) is quite general and encompasses a large num-
ber of mathematical models of physiological processes, including those mentioned
earlier. Here, we consider models of two distinct biological processes to illustrate the
general technique derived in section 2. We begin with a model of the dynamics of
the lac-operon, in which sequential expression of intermediate proteins controls the
ability to use lactose an energy source. We consider Goodwin's ODE model of lac-
operon dynamics, as well as a discrete DDE form of the same model, and reduce these
models to scalar distributed DDEs. The calculations shown here easily generalize to
cyclic systems with n \geqslant 4 and demonstrate how to adapt our results to models with
compartment specific clearance rates and where the final compartment depends more
generally on the other components than in (1.1).
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We next consider a recent article studying white blood cell production [33]. The
hematopoietic, or blood production, system has been modeled extensively, and these
models often include explicit or implicit delays. As mentioned by Knauer, Stiehl,
and Marciniak-Czochra [33], a compartmental system with linear feedback regula-
tion implicitly includes a distributed delay, and the coupling of this delay with feed-
back is enough to produce oscillations. These oscillations are of particular interest in
hematopoiesis due to the so called ``dynamical diseases"" [38]. Here, we show that the
Knauer, Stiehl, and Marciniak-Czochra [33] model with maturation compartments
and nonlinear feedback also encodes a gamma type delay.

4.1. Models of lac-operon dynamics. The lac-operon facilitates the use of
lactose as a fuel source in certain types of bacteria and was one of the first genetic
regulatory mechanisms to be understood. This regulatory mechanism is controlled by
the presence of allolactose. In the presence of allolactose, mRNA transcription occurs
and leads to the production of \beta -galactosidase, which converts allolactose to glucose.
This conversion of allolactose eventually inhibits the production of mRNA and results
in bistability in the operon. The lac-operon was one of the first genetic regulatory
mechanisms to display such bistability.

Yildirim et al. [60] proposed a reduced model of lac-operon dynamics to study
the importance of \beta -galactosidase on the bistability of the operon. The structure of
the reduced model proposed by Yildirim et al. [60] is similar to Goodwin's model of
repressible dynamics [23]. Before considering the Yildirim's DDE model of lac-operon
dynamics, we study the simpler Goodwin [23] model. Goodwin's model includes a me-
tabolite controlled enzyme and intermediate stage and is known to produce oscillatory
dynamics [23].

Goodwin's model is a system of three differential equations modeling mRNA,
M(t); intermediate protein, I(t); and effectors, E(t) [23]. The Goodwin model is a
simple example of cyclic dynamics, where the production of one population is self-
regulating through the dynamics of the other two. By showing that the Goodwin
model can be reduced to a scalar distributed DDE, we make this self-regulation ex-
plicit. The ODE model is

(4.1)

\left\{             

d

dt
M(t) = F [E(t)] - \gamma MM(t),

d

dt
I(t) = \alpha IM(t) - \gamma II(t),

d

dt
E(t) = \alpha EI(t) - \gamma EE(t).

The parameters \alpha j and \gamma j are positive real numbers for j =M, I,E and represent the
production and clearance of the jth species, respectively. F [E(t)] represents mRNA
production driven by either an inducible or repressible operon, with the monotonicity
of F determining the type of feedback. As a first example of how to apply Theorem 2.2
in a cyclic feedback structure, we first reduce (4.1) to a distributed DDE where the
effector E(t) population is self-regulating.

Equation (4.1) is in a similar form to (1.1) for [x1(t), x2(t), x3(t)] = [I(t), E(t),M(t)]
and K1(s) = K2(s) = \delta (s) so that

f1

\biggl( \int \infty 

0

x3(t - s)K1(s)ds

\biggr) 
= \alpha IM(t) and f2

\biggl( \int \infty 

0

x1(t - s)K2(s)ds

\biggr) 
= \alpha EI(t).

However, the clearance rates differ between compartments with \mu 1(x3(t))x1(t) =
\gamma II(t) and \mu 2(x3(t))x2(t) = \gamma EE(t). Using the technique from the proof of
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Lemma 2.1, we easily obtain

I(t) =

\int t

 - \infty 
\alpha IM(\varphi )e - \gamma I(t - \varphi )d\varphi =

\int \infty 

0

\alpha IM(t - \varphi )e - \gamma I\varphi d\varphi 

and

E(t) =

\int \infty 

0

\alpha E

\int t - \theta 

 - \infty 
\alpha IM(\varphi )e - \gamma I(t - \theta  - \varphi )d\varphi \underbrace{}  \underbrace{}  

I(t - \theta )

e - \gamma E(t - \theta )d\theta .

Then, we immediately obtain the equivalent distributed DDE for the ODE model
(4.1)

d

dt
M(t) = F

\left[     
\int \infty 

0

\alpha E

\int t - \theta 

 - \infty 
\alpha IM(\varphi )e - \gamma I(t - \theta  - \varphi )d\varphi \underbrace{}  \underbrace{}  

I(t - \theta )

e - \gamma E(t - \theta )d\theta 

\right]      - \gamma MM(t).(4.2)

There is no obvious ageing structure in the chain of enzyme, metabolite, and inter-
mediate protein. However, as mentioned, the cascade from metabolite to enzyme to
intermediate protein defines a ``cyclic"" model structure. In this sense, the metabolite
controls it's own expression through (4.2).

4.1.1. Delayed lac-operon model. Having shown how to reduce Goodwin's
model of repressible dynamics to a scalar distributed DDE, we now consider the
reduced Yildirim et al. model of the delayed lac-operon [60]. This model is given by
three discrete DDEs:

(4.3)

\left\{               

d

dt
M(t) = F

\bigl[ 
e - \nu E\tau ME(t - \tau M )

\bigr] 
 - \gamma MM(t),

d

dt
I(t) = \alpha IM(t - \tau I)e

 - \nu M\tau I  - \gamma II(t),

d

dt
E(t) = \alpha EI(t) - \beta EI(t)

E(t)

KE + E(t)
 - \gamma EE(t).

The model in (4.3) is slightly more complicated due to the presence of discrete delays
and the nonlinearity in the equation for E(t). Due to the nonlinear Hill term in the
differential equation for E(t), we construct the cyclic structure in a different order than
for (4.1), namely, [x1(t), x2(t), x3(t)] = [M(t), I(t), E(t)], and include this example to
extend the framework in Theorem 2.2 to more general differential equations for xn(t).
To apply Theorem 2.2, we define K1(s) = \delta (s  - \tau M ) and K2(s) = \delta (s  - \tau I) which
gives

f1

\biggl( 
e - \nu E\tau M

\int \infty 

0

x3(t - s)K1(s)ds

\biggr) 
= F

\bigl[ 
e - \nu E\tau ME(t - \tau M )

\bigr] 
,

f2

\biggl( 
e - \nu M\tau I

\int \infty 

0

x1(t - s)K2(s)ds

\biggr) 
= \alpha IM(t - \tau I)e

 - \nu M\tau I ,

and the clearance rates \mu 1(x3(t))x1(t) = \gamma MM(t) and \mu 2(x3(t))x2(t) = \gamma II(t). We
thus immediately obtain

M(t) =

\int \infty 

0

F
\bigl[ 
e - \nu E\tau ME(t - \varphi  - \tau M )

\bigr] 
e - \gamma M\varphi d\varphi (4.4)
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and

I(t) =

\int \infty 

0

\alpha IM(t - \theta  - \tau I)e
 - \nu M\tau Ie - \gamma I(\theta )d\theta 

=

\int \infty 

0

\alpha I

\biggl[ \int \infty 

0

F
\bigl[ 
e - \nu E\tau ME(t - \theta  - \varphi  - \tau I  - \tau M )

\bigr] 
e - \gamma M\varphi d\varphi 

\biggr] 
e - \nu M\tau Ie - \gamma I\theta d\theta .

(4.5)

Now, using (4.4) and (4.5), the system (4.3) becomes the following scalar distributed
DDE for E(t):
(4.6)\left\{         

d

dt
E(t) =

\int t

 - \infty 
\alpha I

\Biggl[ \int \theta  - \tau I

 - \infty 
F
\bigl[ 
e - \nu E\tau ME(\varphi  - \tau M )

\bigr] 
e - \gamma M (\theta  - \tau I - \varphi )d\varphi 

\Biggr] 
e - \nu E\tau Ie - \gamma I(t - \theta )d\theta 

\times 
\biggl[ 
\alpha E  - \beta E

E(t)

KE + E(t)

\biggr] 
 - \gamma EE(t).

The product of (4.5) and the Hill function in (4.6) illustrates a simple extension of
the generic form of (1.1) to differential equations that include more general terms in
the final stage.

4.1.2. Linearization of the delayed lac-operon model. Equation (4.3) is a
discrete DDE, so the canonical choice for the phase space is \scrC ( - max[\tau i, \tau M ], 0) and
equilibrium solutions are constant functions satisfying the implicit condition

\gamma EE
\ast =

\biggl( 
\alpha E  - \beta E

E\ast 

KE + E\ast 

\biggr) \biggl( 
\alpha I

\gamma I

\biggr) 
F [e - \nu E\tau ME\ast ]

\gamma M
e - \nu E\tau I .

To compute the characteristic equation and emphasize the more general dependence
on the final stage in this example, we rewrite (4.6) as

d

dt
E(t) = (HE)

\biggl[ 
\alpha E  - \beta E

E(t)

KE + E(t)

\biggr] 
 - \gamma EE(t),

where

H : E \rightarrow 
\int \infty 

0

\alpha I

\biggl[ \int \infty 

0

F
\bigl[ 
e - \nu E\tau ME(t - \theta  - \varphi  - \tau I  - \tau M )

\bigr] 
e - \gamma M\varphi d\varphi 

\biggr] 
e - \nu M\tau Ie - \gamma I\theta d\theta .

Using x(t) = E(t) - E\ast and making the ansatz x(t) = Ce\lambda t, the linearization of (4.6)
about the equilibrium solution E\ast is therefore

\lambda x(t) =

\biggl( 
\alpha E  - \beta EE

\ast 

KE + E\ast 

\biggr) 
\times DHx - 

\biggl( 
\=E\ast \beta EKE

(KE + E\ast )2
+ \gamma EE

\ast 
\biggr) 
x(t),(4.7)

where \=E\ast = HE\ast and we use the generic characteristic equation (3.5) with the specific
forms of fi and Ki to obtain

DHx =
\bigl( 
\partial xF (e

 - \nu E\tau ME\ast )e - \nu M\tau I
\bigr) \biggl( \alpha I

\gamma I + \lambda 

\biggr) \biggl( 
e - \lambda (\tau I+\tau M )

\gamma M + \lambda 

\biggr) 
x(t).

In particular, we note that \mu \prime 
I = \mu \prime 

M = 0, and, after rearranging (4.7), we obtain the
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characteristic equation

0 =

\biggl( 
\lambda +

\beta E \=E\ast KE

(KE + E\ast )2
+ \gamma E

\biggr) 
(\lambda + \gamma I)(\lambda + \gamma M )

 - 
\biggl( 
\alpha E  - \beta E

E\ast 

KE + E\ast 

\biggr) 
\partial xF (e

 - \nu E\tau ME\ast )e - \nu M\tau I\alpha Ie
 - \lambda (\tau I+\tau M ),

which is exactly the characteristic equation found by [60] (after undoing their nondi-
mensionalization). Thus, we have shown how to reduce a system of three discrete
DDEs to a scalar differential equation and have computed the characteristic equation
without computing Jacobian matrices or determinants.

4.2. Compartmental white blood cell model. The human hematopoietic
system is responsible for blood cell production and is tightly regulated by circulating
cytokine concentrations. This cytokine control of blood cell production, maturation,
and release into the circulation ensures that the hematopoietic system is able to
respond to challenges such as infection, blood loss, and hypoxemia. There has been
extensive interest in mathematical modeling of the control mechanisms underlying
the regulatory control of the hematopoietic system [37, 47]. In general, a circulating
population of blood cells controls the production of precursors through a negative
feedback loop mediated by cytokine signaling. In the absence of exogeneous cytokine
administration, it is common to use a quasi-steady-state approximation to discard a
model for the cytokine signaling and simply use the circulating concentration of blood
cells to control precursor production. Accordingly, these models typically exhibit the
form of (1.1).

The production of neutrophils, the most common type of white blood cell in hu-
mans, has been extensively modeled over the past half century [11, 40, 47, 50]. Neu-
trophil precursors progress through a number of distinct proliferation and maturation
stages before entering a reservoir of mature cells in the bone marrow and passing
into circulation. It is common to model each of these stages separately, leading to
a system of ODEs [48, 49, 50, 55]. Consequently, these models can be transformed
to a distributed DDE through the LCT [4, 6], where the distributed delay represents
the time required for nascent neutrophil precursors to pass from the hematopoietic
stem cell populations through proliferation and maturation stages before reaching the
circulation.

Marciniak-Czochra et al. [42] introduced a compartmental model of hematopoietic
stem cell regeneration that has since been adapted to study bone marrow transplan-
tation, resistance to therapy in leukemia, and other disorders of the hematopoietic
system. Recently, the model was thoroughly analyzed for two compartments in [22],
who showed that the homeostatic equilibrium point is globally stable when it exists.
Knauer, Stiehl, and Marciniak-Czochra [33] considered a multicompartment version
of the model and demonstrated the existence of a supercritical Hopf bifurcation that
leads to oscillatory circulating blood concentrations, similar to those observed in cyclic
neutropenia [10, 24, 46, 58]. Interestingly, the supercritical Hopf bifurcation and re-
sulting periodic orbit is not present in a similar model without the multiple matura-
tion stages but rather results from the inclusion of a multistage maturation process
[22, 33]. This multistage maturation process results in the multicompartment nature
of the Knauer, Stiehl, and Marciniak-Czochra [33] model, where each compartment
corresponds to a distinct stage in the differentiation process. As the authors mention,
these multicompartment models have a long history in modeling cyclic neutropenia,
and typically are structured to implicitly (or explicitly) induce a delay in the feed-
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back. The Knauer, Stiehl, and Marciniak-Czochra [33] model is the following three
compartment model:

(4.8)

\left\{                 

d

dt
u1(t) =

\biggl( 
2

a1
1 + ku3(t)

 - 1

\biggr) 
p1u1(t),

d

dt
u2(t) =

\biggl( 
2

a2
1 + ku3(t)

 - 1

\biggr) 
p2u2(t) + 2

\biggl( 
1 - a1

1 + ku3(t)

\biggr) 
p1u1(t),

d

dt
u3(t) = 2

\biggl( 
1 - a2

1 + ku3(t)

\biggr) 
p2u2(t) - d3u3(t).

Here, we show that the maturation stage in the compartmental model (4.8) acts
to impose a distributed delay and we reduce (4.8) to a coupled ODE and distributed
DDE. This is a departure from earlier examples in which we completely reduced the
system to a scalar distributed DDE. While we are only reducing the number of free
variables in (4.8) by one in this example, our results immediately apply to models
with the same structure as (4.8) with n > 3 compartments that have been used ex-
tensively in hematopoietic modeling [43, 56, 57, 59]. Moreover, this example contains
a nonconstant \mu (xn(t)) and the resulting exponential integral. These nonconstant ex-
ponential integrals occur naturally in other DDE models of hematopoiesis that arise
from physiologically structured models [4, 6, 8, 35]. In these models, the linearization
was performed on a model by model basis, so we include this example to demon-
strate how the characteristic function (3.5) can be obtained for these physiologically
structured models.

We note that the reduction to a scalar DDE is possible for (4.8), but with an
additional complication as the differential equation for u1 is homogeneous in u1 with
f1(u3(t)) = 0. Consequently, the scalar DDE for u3 obtained by applying Theo-
rem 2.2 explicitly depends on the initial condition u1(0). This explicit dependence
on initial conditions has a simple biological explanation: u1(0) represents the initial
population of hematopoietic stem cells which are only produced through self-renewal
of the existing stem cell population. Thus, the circulating concentration of white
blood cells will influence the growth or decay rate of the hematopoietic stem cells
but cannot independently drive the production of new hematopoietic cells without
hematopoietic stem cell self-renewal. Therefore, we reduce (4.8) to a system for the
hematopoietic stem cell population and the circulating neutrophil concentration by
replacing the intermediate compartment u2 with a distributed delay, which leaves a
system of differential equations for u1 and u3.

We consider [x1(t), x2(t)] = [u2(t), u3(t)] in (4.8), where the effective proliferation
rate of cells in compartment i is given by pi with a fraction,\biggl( 

2
ai

1 + ku3(t)
 - 1

\biggr) 
,

of these cells self-renewing and remaining in the ith compartment, while the remaining
fraction,

2

\biggl( 
1 - ai

1 + ku3(t)

\biggr) 
,

progresses to the subsequent compartment and mature cells are cleared from circula-
tion linearly at a rate d3.
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We begin with the differential equation for u2,

d

dt
u2(t) = 2

\biggl( 
1 - a1

1 + ku3(t)

\biggr) 
p1u1(t) +

\biggl( 
2a2

1 + ku3(t)
 - 1

\biggr) 
p2u2(t),

and note that this differential equation has precisely the form of (1.1) with K2(s) =
\delta (s),

f2

\biggl( \int \infty 

0

x1(t - s)K2(s)ds

\biggr) 
= 2

\biggl( 
1 - a1

1 + ku3(t)

\biggr) 
p1u1(t) and \mu (xn(t)) = p2

\biggl( 
2a2

1 + ku3(t)
 - 1

\biggr) 
.

Thus, it follows that

u2(t) =

\int \infty 

0

2

\biggl( 
1 - a1

1 + ku3(t - \sigma )

\biggr) 
p1u1(t - \sigma ) exp

\biggl[ 
p2

\int t

t - \sigma 

\biggl( 
2a2

1 + ku3(x)
 - 1

\biggr) 
dx

\biggr] 
d\sigma .

(4.9)

To facilitate the following computations, let

h1(y) = 2p1

\biggl( 
1 - a1

1 + ky

\biggr) 
and h2(y) = p2

\biggl( 
2a2

1 + ky
 - 1

\biggr) 
so we can write (4.9) as

u2(t) =

\int \infty 

0

h1(u3(t - \sigma ))(u1(t - \sigma )) exp

\biggl[ \int t

t - \sigma 

h2(u3(x))dx

\biggr] 
d\sigma ,

and the Knauer, Stiehl, and Marciniak-Czochra [33] model reduces to

(4.10)

\left\{                 

d

dt
u1(t) =

\biggl( 
2

a1
1 + ku3(t)

 - 1

\biggr) 
p1u1(t),

d

dt
u3(t) =

\biggl( \int \infty 

0

h1(u3(t - \sigma ))(u1(t - \sigma )) exp

\biggl[ \int t

t - \sigma 

h2(u3(x))dx

\biggr] 
d\sigma 

\biggr) 
\times 2p2

\biggl( 
1 - a2

1 + ku3(t)

\biggr) 
 - d3u3(t).

In the preceding calculation, we have implicitly assumed that u1(0) \not = 0. Now, if
u1(0) = 0, then u1(t) = 0 for all t > 0 and the 3 compartment model (4.8) becomes

(4.11)

\left\{       
d

dt
u2(t) =

\biggl( 
2

a2
1 + ku3(t)

 - 1

\biggr) 
p2u2(t),

d

dt
u3(t) = 2

\biggl( 
1 - a2

1 + ku3(t)

\biggr) 
p2u2(t) - d3u3(t).

Then, the preceding discussion regarding the biological interpretation of u1(0) for
(4.8) can be repeated verbatim for (4.11) but now with u2(0).
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4.2.1. Equilibria and linearization. In the DDE form of the Knauer model
given by (4.10), equilibria solutions are the constant functions (u1(t), u3(t)) = (u\ast 1, u

\ast 
3)

such that the right-hand side of (4.10) is zero. Immediately, we see that

u\ast 1 = 0 or u\ast 3 =
2a1  - 1

k
.

Using the equilibrium value of u\ast 3, the nonzero equilibria value of u\ast 1 is given by

d3u
\ast 
3 = 4p1p2

\biggl( 
1 - a1

1 + ku\ast 3

\biggr) \biggl( 
1 - a2

1 + ku\ast 3

\biggr) 
u\ast 1

\int \infty 

0

exp

\biggl[ 
p2

\biggl( 
2a2

1 + ku\ast 3
 - 1

\biggr) 
\sigma 

\biggr] 
d\sigma 

=
p1

\Bigl( 
2 - a2

a1

\Bigr) 
u\ast 1

1 - a2

a1

,

which is the value found by [33] and only exists if a2 < a1 so h2(u
\ast 
3) = p2(a2/a1 - 1) < 0

and h1(u
\ast 
3) = p1. Now, to linearize about the equilibrium solution, we must calculate

the 2\times 2 Jacobian matrix A such that z(t) = u(t) - u\ast satisfies

d

dt
z(t) = Az(t).

As we are considering the coupled system (4.10), the linearization differs from previous
examples where we obtained a scalar linearized differential equation. We begin with
the computation of the linear approximation of the delayed term\int \infty 

0

h1(u
\ast 
3 + z3(t - \sigma ))(u\ast 1 + z1(t - \sigma )) exp

\biggl[ \int t

t - \sigma 

h2(u
\ast 
3 + z3(x))dx

\biggr] 
.

Taylor expanding the above expression in z1 and z3 gives\int \infty 

0

[h1(u
\ast 
3) + h\prime 1(u

\ast 
3)z3(t - \sigma )](u\ast 1 + z1(t - \sigma ))eh2(u

\ast 
3)\sigma 

\times 
\biggl( 
1 +

\int t

t - \sigma 

h\prime 2(u
\ast 
3)z3(x)dx

\biggr) 
d\sigma +\scrO (z2)

=
h1(u

\ast 
3)u

\ast 
1

h2(u\ast 3)
+

\int \infty 

0

[h\prime 1(u
\ast 
3)u

\ast 
1z3(t - \sigma ) + h1(u

\ast 
3)z1(t - \sigma )]eh2(u

\ast 
3)\sigma d\sigma 

+

\int \infty 

0

h1(u
\ast 
3)u

\ast 
1e

h2(u
\ast 
3)\sigma 

\biggl[ \int t

t - \sigma 

h\prime 2(u
\ast 
3)z3(x)dx

\biggr] 
d\sigma +\scrO (z2).

We discard the nonlinear terms and insert the ansatz z(t) = Ce\lambda t to find

h1(u
\ast 
3)u

\ast 
1

h2(u\ast 3)
+

\int \infty 

0

[h\prime 1(u
\ast 
3)u

\ast 
1z3(t - \sigma ) + h1(u

\ast 
3)z1(t - \sigma )]eh2(u

\ast 
3)\sigma d\sigma 

+

\int \infty 

0

h1(u
\ast 
3)u

\ast 
1e

h2(u
\ast 
3)\sigma 

\biggl[ \int t

t - \sigma 

h\prime 2(u
\ast 
3)z3(x)dx

\biggr] 
d\sigma +\scrO (z2)

=
h1(u

\ast 
3)u

\ast 
1

h2(u\ast 3)
+

h\prime 1(u
\ast 
3)u

\ast 
1

\lambda + h2(u\ast 3)
z3(t) +

h1(u
\ast 
3)

\lambda + h2(u\ast 3)
z1(t)

+

\int \infty 

0

h1(u
\ast 
3)u

\ast 
1e

h2(u
\ast 
3)\sigma 

\biggl[ \int t

t - \sigma 

h\prime 2(u
\ast 
3)z3(x)dx

\biggr] 
d\sigma .
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Then, following the calculation of (3.5), we obtain the linear differential equation
for z3(t):

d

dt
z3(t) =  - d3(z3(t) + u\ast 3) +

\biggl[ 
2p2

\biggl( 
1 - a2

1 + ku\ast 3

\biggr) 
+ 2p2

ka2
(2a1)2

z3(t) +\scrO (z2)

\biggr] 
\times 
\biggl[ 

h1(u
\ast 
3)u

\ast 
1

p2(1 - a2/a1)
+

\biggl( 
u\ast 1[h

\prime 
1(u

\ast 
3)h2(u

\ast 
3) + h1(u

\ast 
3)h

\prime 
2(u

\ast 
3)]

h2(u\ast 3)[\lambda + p2(1 - a2/a1)]

\biggr) 
z3(t)

+

\biggl( 
h1(u

\ast )

\lambda + p2(1 - a2/a1)

\biggr) 
z1(t) +\scrO (z2)

\biggr] 
=

\biggl[ 
 - d3 + 2p2

ka2
(2a1)2

h1(u
\ast 
3)u

\ast 
1

p2(1 - a2/a1)

+ 2p2

\biggl( 
1 - a2

1 + ku\ast 3

\biggr) \biggl( 
u\ast 1[h

\prime 
1(u

\ast 
3)h2(u

\ast 
3) + h1(u

\ast 
3)h

\prime 
2(u

\ast 
3)]

h2(u\ast 3)[\lambda + p2(1 - a2/a1)]

\biggr) \biggr] 
z3(t)

+

\biggl( 
2p2

\biggl( 
1 - a2

1 + ku\ast 3

\biggr) 
h1(u

\ast )

\lambda + p2(1 - a2/a1)

\biggr) 
z1(t).

From which we get the linearization matrix A,

A(\lambda ) =

\left[   0
\Bigl( 
1 - 1

2a1

\Bigr) 
d3

2 - a2/a1
(1 - a2/a1)

p2

\Bigl( 
2 - a2

a1

\Bigr) 
h1(u

\ast )
\lambda +p2(1 - a2/a1)

d3

\biggl[ \Bigl( 
1 - 1

2a1

\Bigr) 
a2

a1

1
2 - a2

a1

 - 1

\biggr] 
+A22(\lambda )

\right]   ,
where

A22(\lambda ) = 2p2

\biggl( 
1 - a2

1 + ku\ast 3

\biggr) \biggl( 
u\ast 1[h

\prime 
1(u

\ast 
3)h2(u

\ast 
3) + h1(u

\ast 
3)h

\prime 
2(u

\ast 
3)]

h2(u\ast 3)[\lambda + p2(1 - a2/a1)]

\biggr) 
.

Following [33] and rescaling time by \^t = tp1, we have h1(u
\ast 
3) = 1, so

A22(\lambda ) = p2d3

\biggl( 
1 - 2

a2
a1

\biggr) \biggl( 
1 - 1

2a1

\biggr) \biggl( 
1

\lambda + p2(1 - a2/a1)

\biggr) 
.

Then, computing det [\lambda I  - A] gives the same characteristic equation as was found
in [33]:

0 = \lambda 3 +

\Biggl[ \biggl( 
1 - a2

a1

\biggr) 
p2 +

\biggl( 
1 - a2

a1

\biggr) \biggl( 
1 - 1

2a1

\biggr) 
1

2 - a2

a1

\Biggr] 
\lambda 2

+

\Biggl[ \biggl( 
1 - a2

a1

\biggr) \Biggl( 
1 - a2

a1

\biggl( 
1 - 1

2a1

\biggr) 
1

2 - a2

a1

\Biggr) 
 - 
\biggl( 
1 - 1

2a1

\biggr) \biggl( 
1 - 2

a2
a1

\biggr) \Biggr] 
d3p2\lambda 

+

\biggl( 
1 - 1

2a1

\biggr) \biggl( 
1 - a2

a1

\biggr) 
d3p2.

4.2.2. Biological interpretation. Oscillations in mathematical models of
hematopoiesis have been extensively studied, with cyclic neutropenia being a
canonical example of a dynamical disease. These mathematical models often include
delayed feedback from the circulation to the immature precursor cells, either indirectly
through a quasi-steady-state assumption or explicitly through external control via
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models of cytokine dynamics. The in-depth anaylsis of Getto et al. [22] demonstrates
that the Knauer, Stiehl, and Marciniak-Czochra [33] model without the maturation
compartment cannot produce oscillatory solutions. However, the multistage com-
partment model in (4.8) undergoes a Hopf bifurcation and produces solutions that
compare favorably with observed data from patients with cyclic neutropenia. Knauer,
Stiehl, and Marciniak-Czochra state that a nonlinear model without explicit delays
has not been used to model oscillatory behavior in the hematopoietic system. Here,
we show that the Knauer, Stiehl, and Marciniak-Czochra [33] model also shares the
framework of delayed feedback between circulating and precursor hematopoietic cells
by explicitly constructing the equivalent distributed DDE. Taken with the results of
[22], this result supports the conclusion that a delay between signal and response in
the feedback loop is necessary to recapture the oscillatory dynamics observed in the
hematopoietic system.

5. Conclusion. In this work, we have formalized the relationship between cyclic
differential equations and distributed DDEs. This relationship is well known in the
case of transit compartment models as the LCT, and has been shown to lead to state
dependent distributed DDEs in the variable transit rate case [6]. However, both of
these equivalences require linear transit between compartments, which is not the case
in our work. At the heart of the LCT is the ability to write down a closed form
integral solution of the transit compartment model. Here, we use the same idea in
a more general setting to establish the equivalence between general cyclic differential
equations that include both nonlinearities and delays, and scalar distributed DDEs
by writing an integral form solution of the transit compartments. In essence, we
demonstrate how sequentially solving the transit compartment system naturally leads
to a scalar distributed DDE.

As discussed throughout the text, the reduction of a generic cyclic model to a
scalar distributed DDE has a number of advantages. Mathematically, determining the
existence of equilibria in n dimensional systems typically requires solving n simulta-
neous equations, and it is, in general, difficult to determine a priori if an equilibrium
point exists. Conversely, both de Souza et al. and Cassidy, Craig, and Humphries
demonstrate that the distributed DDE formulation of transit compartment models
can be more tractable to analytical techniques [4, 6]. In general, the equivalence de-
rived in this work allows modelers to use analytical techniques from single variable
calculus to prove the existence of an equilibrium solution in the scalar formulation
and then use the efficient numerical solvers to numerically calculate their value using
the special structure of the cyclic system. Once an equilibrium solution has been
found, studying the local stability properties of the equilibrium in the cyclic formula-
tion involves calculating the n\times n determinant of the Jacobian matrix. Consequently,
if modeling biological data indicates the need for the inclusion of an additional in-
termediate modeling stage, as in the model of hematopoiesis mentioned earlier, it is
necessary to recalculate the now (n+ 1)\times (n+ 1) Jacobian matrix and it's determi-
nant. Conversely, when working with the equivalent scalar distributed DDE, studying
the local stability of these equilibria corresponds to calculating a Fr\'echet derivative.
As we have shown, this calculation replaces the calculation of the determinant of the
n \times n Jacobian matrix with the chain rule of Fr\'echet derivatives, and is much more
amendable to the inclusion of new modeling stages.

Biologically, the scalar distributed DDE explicitly identifies delays between signal
and response that are otherwise hidden in the equivalent cyclic system. Moreover,
each intermediate stage represents another quantity that should be compared to data
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when validating a mathematical model. However, these intermediate stages are either
often difficult to measure or do not represent specific physiological compartments. To
emphasize this point, we considered two examples that represent biological systems
without obvious delays, and showed that identifying the otherwise hidden delays can
suggest necessary model ingredients to recapture biological phenomena, as in sec-
tion 4.2. Conversely, when considering the equivalent scalar distributed DDE, the
model output may be easier to compare against biological data. In a related point,
using the scalar distributed DDE formulation can alleviate nonbiological modeling
assumptions. For example, using a transit compartment ODE model to replace a
distributed DDE imposes a nonbiological constraint on the delayed process. Namely,
imposing that the delayed process be Erlang distributed constrains one of the two
parameters of the gamma distribution. As the mean, \tau , and variance, \sigma 2, of a delayed
process precisely determine the shape and scale parameters of the gamma distribution,
imposing that the shape parameter is an integer leads to an overdetermined system
for the remaining scale parameter and artificially enforces \tau 2 = m\sigma 2 for integer m.
For example, when modeling the duration of the cell cycle using an Erlang distrib-
uted DDE, modelers can capture the mean or the variance of the delayed process, but
not generally both [5, 31]. This limitation is alleviated when using the more general
distributed DDE.

In summary, we formalized the equivalence between cyclic systems of differential
equations with delay and scalar distributed DDEs. However, the distributed DDE
formulation of cyclic models has some limitations. The most striking of these is the
lack of established numerical techniques for the simulation and bifurcation analysis of
infinite delay models. Given the multitude of tools available for discrete or no delay
systems, the main area of application for our results is thus cyclic systems that already
include more general distributed delays. In these cases, it may be preferable to apply
the recently developed techniques from [18, 26] to the scalar distributed DDE (2.3)
rather than to each component of the cyclic system. All told, the equivalence estab-
lished in this work allows researchers to study the mathematical model in whichever
form is most convenient, and may elucidate otherwise hidden delayed processes.

Acknowledgments. I am grateful to Tony Humphries, Morgan Craig, and
Michael Mackey for comments that helped shape this manuscript.
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