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Abstract In this work, we propose a method combining the Sinc collocation method
with the double exponential transformation for computing the eigenvalues of the
anharmonic Coulombic potential. We introduce a scaling factor that improves the
convergence speed and the stability of the method. Further, we apply this method to
Coulombic potentials leading to a highly efficient and accurate computation of the
eigenvalues.
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1 Introduction

The Coulombic anharmonic oscillator potential, which is given by V (x) = a−2
x2

+
a−1

x +∑n
i=1 ai xi , has been of considerable interest in the study of the Schrödinger

equation. The potential describes the interaction between charged particles and con-
sistently arises in physical applications. These applications include interactions in
atomic, molecular and particle physics, and between nuclei in plasma [1,2]. The study

The corresponding author acknowledges the financial support for this research by the Natural Sciences
and Engineering Research Council of Canada (NSERC) - Grant RGPIN-2016-04317.

B Hassan Safouhi
hassan.safouhi@ualberta.ca

1 Mathematical Section, Campus Saint-Jean, University of Alberta, 8406, 91 Street,
Edmonton, AB T6C 4G9, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-017-0801-5&domain=pdf


478 J Math Chem (2018) 56:477–492

of the Schrödinger equation involves computation of the energy states, and many dif-
ferent methods have been proposed for accurate and efficient calculation of the energy
eigenvalues [2–6]. In [3], the authors use the Hill determinant method to numeri-
cally evaluate the Coulomb potential in N dimensions. They initially transform the
N dimension differential equation into a (2N − 4) dimensional problem. This trans-
formation produces the structure of a one dimensional Schrödinger equation with a
spherically symmetric potential. The authors then reduce the dimension of the problem
by transforming the Schrödinger equation into a radial differential equation, leading to
numerical approximations of the energy eigenvalues. In [4], the authors use an appro-
priate wavefunction ansatz and the Hill determinant method to find energy eigenvalues
for the Coulomb potential and the sextic oscillator problem. They also produce a rela-
tion between parameters leading to exactly solvable equations. However, the Hill
determinant method presents several limitations, including a lack of convergence to
higher order eigenvalues and the production of non physically realistic results [7]. In
addition, the method does not account for an important aspect of the wavefunction,
for instance, decay at the boundaries [7].

Conversely, theRiccati-Padémethodhas beenused in the calculation of bound states
and resonances in the Coulomb potential [5]. This method consists of transforming the
Schrödinger equation into a Riccati type equation for the logarithmic derivative of the
wavefunction. Analysis of the Riccati equation provides a deeper understanding of the
overall nature of both the wavefunction and the energy eigenvalues. In [5], the method
shows convergence towards eigenvalues of the Schrödinger equation for bounded and
unbounded states. In a separate work [8], the Riccati-Padé method is combined with
Hankel determinants to find resonance states of the Coulomb potential. While useful,
the Riccati-Padé method can only produce bounds on the eigenvalues. These bounds
can give quite good approximations of the energy eigenvalues, but can also be so
large that they do not produce any meaningful information [9]. Achieving acceptable
error bounds on the eigenvalues requires an increase in the dimension of the Hankel
determinants. Further, the complexity of the method increases with the complexity of
the potential. Finally, the method can also yield unwanted and unrealistic solutions
[9].

The super symmetric quantum mechanic approach has also produced results with
potentials of the form V (x) = α

r +∑i=1 4pir i . In [1], the authors solved the equation
using supersymmetric quantum mechanics. Their results are mostly in agreement
with exact values. Nevertheless, poor agreement seems to arise when the potential
has multiple wells or roots. There has also been advancement in the combination of
supersymmetric quantum mechanics and perturbation theory. In [2], a combination of
these techniques to find exact solutions to the perturbedCoulombpotential is proposed.
This method can be expanded to include many other potentials and their excited states.
However, the method requires constraints on the parameters of the potential and these
constraints differ for different eigenvalues [2].

In [6], the Sinc collocation method (SCM) has been used in a combination with the
single exponential (SE) transformation to compute the energy eigenvalues of the radial
Schrödinger equation. The Sinc function and Sinc collocation method have been used
extensively since their introduction to solve a variety of numerical problems [10–12].
The applications include numerical integration, linear and non-linear ordinary dif-
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ferential equations as well as partial differential equations [13,14,16–23]. The single
exponential Sinc collocationmethod (SESCM) has been shown to offer an exponential
convergence rate and works well in the presence of singularities. The double expo-
nential (DE) transform, introduced in 1974 [24], yields near optimal accuracy when
using the trapezoidal rule in numerical integration [25,26]. Since the introduction of
the DE transform, its effectiveness has been studied extensively [27,28]. While expo-
nential convergence is produced using the SESCM, it has been shown that the double
exponential transformation provides an improved numerical convergence [29–31]. It
should be noted that the assumption for DE convergence is stronger than the one for
SE. Given the fact that FDE � FSE , where FSE (respectively FDE ) denotes the
class of functions for which SE is suitable (respectively DE is suitable), there exist
examples such that Sinc expansion with SE achieves its usual rate, whereas it does not
with DE [30,31]. However, in [30,31], the authors present a theoretical convergence
analysis for Sinc methods with DE for functions in FSE\FDE for which DE does
not achieve its usual rate of O (e−κ1n/ log(κ2 n)

)
, and they were able to prove that DE

still works for these functions with errors bounded by O
(

e−κ3
√

N/ log(κ4N )
)
which

is slightly lower than the rate of SE; however, as stated in [30,31] one can consider
that there is almost no difference between the two transformations. This result also
illustrates the great advantage of using DE over SE.

The combination of SCM with the DE transformation was used to compute eigen-
values of the anharmonic oscillator V (x) =∑n

i=1 ai x2i [13] and to Sturm–Liouville
boundary value problems [14]. This method, referred to as the DESCM, is shown to
be highly accurate, efficient and stable for computing the energy eigenvalues of the
Schrödinger equation. In [13], an optimal mesh size for potentials with multiple wells
was derived leading to a substantial improvement of the convergence of the method.

In this work, we provide a refinement for the DESCM and we apply the method
to the anharmonic Coulombic potential. The improved method is capable of dealing
with a vast variety of potentials efficiently. The DESCM approximates the wavefunc-
tion with a series of weighted Sinc functions. By substituting the approximation into
the Schrödinger equation, we obtain a generalized eigensystem where the general-
ized eigenvalues are approximations to the exact energy eigenvalues. We preform
asymptotic analysis on the Schrödinger equation with the anharmonic Coulombic
potential. We use the asymptotic solutions to produce optimized double exponential
transformations.We also present a numerical scaling that improves both the numerical
convergence and stability of the method. Finally, we compare the results of the refined
DESCM with the SESCM to illustrate the superiority of the proposed method.

2 Definitions and properties

The sinc function is defined by the following expression:

sinc (z) =
⎧
⎨

⎩

sin(π z)

π z
for z ∈ C/{0}

1 for z = 0.
(1)
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For k ∈ Z and h a positive number, we define the Sinc function S(k, h)(x) by:

S(k, h)(x) = sinc

(
x − kh

h

)

. (2)

We also note the discrete orthogonality of the Sinc functions [12]. For every j ∈ Z,
we have:

S(k, h)( j h) =
{
1 if k = j
0 if k �= j.

(3)

Definition 2.1 [11, Chapter 1] Given a function v: R → R and any h positive, the
Sinc expansion, also known as the Whittaker Cardinal expansion, of v is defined as:

C(v, h)(x) =
∞∑

k=−∞
v(kh)S( j, h)(x). (4)

The symmetric truncated Sinc expansion given by:

CN (v, h)(x) =
N∑

k=−N

v(kh) S(k, h)(x) with N ∈ N. (5)

In [11], Stenger proposed the following space of functions which are well suited to
Sinc approximations.

Definition 2.2 [11, Definition 3.1] Let 0 < d < π
2 and consider the set Dd to be a

strip of width 2d about the real axis defined as follows:

Dd =
{

z ∈ C : |�(z)| < d <
π

2

}
. (6)

We also define a rectangle in C such that, for ε ∈ (0, 1):

Dd(ε) = {z ∈ C : |�(z)| < 1/ε, |�(z)| < d(1 − ε)} . (7)

Let B2(Dd) be the family of functions g that are analytic in Dd such that:

lim|x |→∞

(∫ d

−d
|g(x + iy)|dy

)

= 0 and N2(g,Dd) := lim
ε→0

(∫

∂Dd (ε)

|g(z)|2|dz|
) 1

2

< ∞. (8)

An analysis of the error induced when approximating a function in the function
space B2(Dd) using a Sinc expansion can be found in [11].
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3 The double exponential Sinc-collocation method

The Schrödinger equation with semi-infinite zero boundary conditions is given by:

Hψ(x) = E ψ(x) for 0 < x < ∞
ψ(0) = ψ(∞) = 0, (9)

where the Hamiltonian operator is given by:

H = − d2

dx2
+ V (x), (10)

and where V (x) stands for the potential.
In [23], the authors proposed the following change of variable:

v(x) =
(√

(φ−1)′ ψ
)

◦ φ(x), (11)

where the conformal map φ(x) is defined according to the following definition.

Definition 3.1 [23] Let 	d be a simply connected domain in the complex plane with
boundary points a and b. Define a conformal map, φ−1, from	d onto the infinite strip
Dd with φ−1(a) = −∞ and φ−1(b) = ∞. Denote the inverse of φ−1 by φ.

The proposed transformation (11) produces a symmetric discretized system when
employing the Sinc collocation method on Sturm–Liouville problems.

Applying the transformation (11) to the Schrödinger equation (9) produces the
following equation:

− v′′(x) + Ṽ (x)v(x) = E (φ′(x))2v(x) with lim|x |→∞ v(x) = 0, (12)

where:

Ṽ (x) = −√φ′(x)
d

dx

(
1

φ′(x)

d

dx

√
φ′(x)

)

+ (φ′(x))2 V (φ(x)). (13)

We note that for analytic V (x) the transformed differential equation has analytic
coefficients. Therefore, basic ordinary differential equation theory assures us of the
existence of an analytic solution.

To utilize the optimality of the double exponential transformation [26], we search
for a conformal mapping φ(x) that will result in the eigenfunction v(x) involved
in (11) to decay double exponentially. The function v(x) decays double exponentially
if there exists positive constants A, β, γ such that for all x ∈ R, we have:

|v(x)| ≤ A exp(−β exp(γ |x |)). (14)

To approximate the solution using the Sinc collocationmethod,we use the truncated
Sinc expansion (5) given by:

123



482 J Math Chem (2018) 56:477–492

CN (v, h)(x) =
N∑

k=−N

vk S(k, h)(x) with vk = v(kh), (15)

and h is the mesh size and N ∈ N. In this case, the 2N +1 function values vk = v(kh)

are unknown. Consequently, we will proceed to find 2N + 1 equations to solve for
these unknown values.

Inserting the truncated Sinc expansion (5) into the differential equation (12) and
evaluating at the collocation points x j = jh, j = −N , . . . , N leads to the following
2N + 1 equations:

N∑

k=−N

[

− 1

h2 δ
(2)
j,k + Ṽ ( jh)δ

(0)
j,k

]

vk = E
N∑

k=−N

[
(φ′( jh))2δ

(0)
j,k

]
vk for

j = −N , . . . , N , (16)

where:

δ
(2)
j,k =

⎧
⎪⎪⎨

⎪⎪⎩

−π2

3
if j = k

(−2)(−1)k− j

(k − j)2
if j �= k

and δ
(0)
j,k =

{
1 if j = k
0 if j �= k.

(17)

In (16), the value E is an approximation of the exact energy eigenvalue E of the
system (12).

Equation (16) can be re-written in a matrix form as follows:

Av = E D2 v ⇒
(
A − E D2

)
v = 0, (18)

where v = [v−N , . . . , vN ]T and the matrix A and the diagonal matrix D2 are given
by:

A =
[

− 1

h2 δ
(2)
j,k + Ṽ ( jh)δ

(0)
j,k

]

j,k=−N ,...,N
and

D2 =
[
(φ′( jh))2δ

(0)
j,k

]

j,k=−N ,...,N
. (19)

As can be seen from (18), the eigenfunctions and eigenvalues of the differential
equation (12) can be approximated by the generalized eigenvalue problem (18).

Now, we denote the Lambert W function by W (x) which is defined as follows:

Definition 3.2 [15, Equation (1.5)] The Lambert W function denoted by W (x) is
defined implicitly by the solution of the following equation:

z = W (x)eW (x). (20)
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In our case, we restrict the Lambert W function to be real valued with the additional
constraint W (x) ≥ −1. This additional constraint forces the Lambert W function to
be single-valued. This branch is commonly denoted by W0(x). For the numerical
evaluation of the Lambert W function, we refer the readers to [15].

Theorem 3.3 [13] Let (v(x), E) be an eigenpair of the transformed Schrödinger
equation given by:

− v′′(x) + Ṽ (x)v(x) = E(φ′(x))2v(x) with lim|x |→∞ v(x) = 0, (21)

where Ṽ (x) = −√
φ′(x) d

dx

(
1

φ′(x)
d

dx

√
φ′(x)

)
+ (φ′(x))2 V (φ(x)). If

1. ∃ A, β, γ > 0 such that: |v(x)| ≤ A exp (−β exp(γ |x |)),
2. v(x) ∈ B2(Dd) with d ≤ π

2γ
,

3. ∃ q > 0 such that Ṽ (x) ≥ q−1,

4. The mesh size h is chosen such that h = W (πdγ N/β)

γ N
,

where W (z) is the Lambert-W function, then the eigenvalue E obtained by solving the
system (18) satisfies the following asymptotic bound with respect to E:

|E − E | = O

[
√

q E

(
N

5
2

log(N )

)

exp

(

− πdγ N

log(πdγ N/β)

)]

as N → ∞. (22)

Since this process can be done for any arbitrary eigenpair {(vn(x), En)}n , it is
clear from Theorem 3.3 that every eigenvalue E will satisfy the error bound for the
appropriate sequence of generalized eigenvalues E .

4 The Coulombic anharmonic potential

The Coulombic anharmonic potential V (x) is given by:

V (x) = a−2

x2
+ a−1

x
+

n∑

i=1

ai xi

=
n∑

i=−2

ai xi with a−2 > 0, a0 = 0 and an > 0. (23)

The negative powers of x and the singularity at x = 0 are some of the defining
features of the anharmonicCoulombic potential. To utilize the Sinc collocationmethod
to compute eigenvalues of Coulombic potential, we search for an appropriate double
exponential transform as defined in Definition 3.1. To find such a transformation, we
must first perform an asymptotic analysis of the differential equation (9).

As x → ∞, the potential is dominated by the term xn term and our differential
equation becomes:
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− ψ ′′(x) + an xnψ(x) ∼ 0 as x → ∞. (24)

Making the substitution ψ(x) = eS(x) where S(x) is such that S′′(x) = o(S′(x)2)

as x → ∞ leads to:
− S′(x)2 + an xn ∼ 0 as x → ∞. (25)

Solving this equation and taking the negative root to satisfy the boundary conditions,
we obtain:

S(x) ∼ −2
√

an

n + 2
x

n+2
2 as x → ∞. (26)

Hence, we deduce the following bound for our wavefunction:

ψ(x) = O

(

exp

[

−2
√

an

n + 2
x

n+2
2

])

as x → ∞. (27)

Conversely, as x → 0+ the Coulomb potential is dominated by x−2 term. We see
that x = 0 is a regular singular point and the equation requires the use of a Frobenius
series type solutions. The solution is of the form ψ(x) = O(xr ), where r is a solution
of the indicial equation:

− r(r − 1) + a−2 = 0 �⇒ r = 1 ± √
1 + 4a−2

2
. (28)

The boundary condition ψ(0) = 0 leads us to reject the negative root, leading us
to the following asymptotic bound as x → 0+:

ψ(x) = O
(
xr ) with r = 1 + √

1 + 4a−2

2
. (29)

Finally, we notice that the wavefunction exhibits exponential decay at infinity and
algebraic decay at zero. Now, we search for a transformation φ(x) that satisfies Defi-
nition 3.1 and produces double exponential decay at infinities. We begin by using the
transformation proposed in [27]:

φ(x) = log
[
esinh(x) + 1

]
∼

⎧
⎪⎨

⎪⎩

ex

2
as x → ∞

exp

[

−e−x

2

]

as x → −∞.
(30)

From the definition of v(x) given by (11), our asymptotic bounds in (27) and (29),
as well as the asymptotic behavior of the conformal map in (30), we can deduce the
following asymptotic bounds for v(x):

v(x) =

⎧
⎪⎪⎨

⎪⎪⎩

O

(

exp

[

−
√

an

(n + 2)2n/2 exp
( n+2

2 x
)
])

as x → ∞

O

(

exp

[

−1 + √
1 + 4a−2

4
exp (−x)

])

as x → −∞.

(31)
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From (31), we notice that the conformalmap (30) indeed leads to a double exponen-
tial decaying function v(x). In order for v(x) to belong to the function space B2(Dd)

as defined in Definition 8, given its asymptotic behavior (31), proper attention must
be given to the quantity N2(g,Dd). For N2(g,Dd) to remain bounded, we require

γ = max

{
n + 2

2
, 1

}

= n + 2

2
.

5 Numerical discussion

We use the DESCM to find energy eigenvalues of the anharmonic Coulomb potential.
The codes are written in double precision using the programming language MATLAB
[33] and are available upon request. A double-precision floating-point format is a
computer number format that occupies 8 bytes (64 bits) in computer memory. In
general, this corresponds to about 15–17 significant decimal digits on average. In the
Figures below, the saturation effect observed in all Figures is merely a consequence of
this computer number format resulting from rounding errors in addition to numerical
instabilities caused by the increasing condition numbers of the matrices involved in
the DESCM. The matrices A and D2 are constructed using (19).

To evaluate the effectiveness of the DESCM, we define the relative error between
known eigenvalues E and numerical eigenvalues E as:

Relative Error = |E − E |
|E | . (32)

Whenmoving to higher order energy eigenvalues or potentials without known analytic
solutions, we use the following approximation to the relative error:

Relative Error Approximation = |Ei (N + 1) − Ei (N )|
|Ei (N + 1)| , (33)

where Ei (N + 1) denotes the (N + 1)th approximation of the i th energy eigenvalue.
To illustrate the convergence of our method, we compute the eigenvalues of poten-

tials that have known analytic solutions [3,6]. These potentials are:

V1(x) = 2
x2

− 16
x + 2x + x2

16 �⇒ E0 = − 59
4

V2(x) = 6
x2

− 24
x + 2x + x2

16 �⇒ E0 = − 57
4

V3(x) = 15
4x2

− 20
x + 2x + x2

16 �⇒ E0 = − 58
4

V4(x) = 35
4x2

− 28
x + 2x + x2

16 �⇒ E0 = −14

V5(x) = 2
x2

+ x2 �⇒ E0 = 5

V6(x) = 3
4x2

+ x2 �⇒ E0 = 4

(34)
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5.1 Refinement of the DESCM

We note the singularity at the left end point of the potential at x = 0. Following the
approach detailed in [32], we search for a general transformation of the form:

φ(x) = log
[
exp
(
α1eα2x − α3e−α4x)+ 1

]
with αi > 0 for i = 1, 2, 3, 4.

(35)
We find that this transformation is ideal as it produces double exponential decay

at both boundaries and is suitable to Sinc expansion. In fact, we have the following
asymptotic behavior at both infinities:

log
[
exp
(
α1eα2x − α3e−α4x)+ 1

] ∼
{

α1eα2x as x → ∞
exp
[−α3e−α4x

]
as x → −∞.

(36)

From the definition of v(x) given by (11), our asymptotic bounds in (27) and (29)
in addition to the asymptotic behavior of the conformal map in (36), we can deduce
the following asymptotic bounds for v(x):

v(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O

⎛

⎝exp

⎡

⎣−
2
√

anαn+2
1

n + 2
exp

(
α2(n + 2)

2
x

)
⎤

⎦

⎞

⎠ as x → ∞

O

(

exp

[

− (1 + √
1 + 4a−2)α3

2
exp (−α4x)

])

as x → −∞.

(37)

Similarly to what was mentioned before, by taking γ = max

{
α2(n + 2)

2
, α4

}

and

d = π

2γ
, we ensure that v(x) ∈ B2(Dd) and is well suited to a Sinc approximation.

The matrices involved in the calculation become ill-conditioned. This is to be
expected as the Schrödinger equation produces eigenvalues that grow unboundedly.
We notice that the numerical blow ups correspond to the increasing condition number.

As our transformation φ(x) = log
[
exp
(
α1eα2x − α3e−α4x

)+ 1
]
includes four

arbitrary positive parameters α1, α2, α3 and α4, we have more freedom in tailoring
the transformation to our potential. We define our optimal parameters to be those that
increase our numerical stability. Our potential has an algebraic singularity at x = 0
resulting in significant numerical instability.

We considered the potential V1(x) and define the optimal parameter set {αi } as
the parameter set that maximized the number of convergent eigenvalues found for
N = 50 collocation points. Where two or more parameter sets gave the same number
of convergent eigenvalues, we chose the parameter set requiring the least number
of collocation points to converge to the ground state eigenvalue. We performed a
systematic search of parameter space. We began the search with α1 = α3 = 0.5 and
α2 = α4 = 1. We began our search of parameter space by incrementing parameter
values by 0.1. This led to a first optimal parameter set of α1 = 1, α2 = 1.3, α3 = 1.2
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Fig. 1 Comparison of the DESCM and the SESCM. a Represents the convergence of the DESCM and the
SESCM towards known eigenvalues of the potential V5. b Represents the convergence of the DESCM and
the SESCM towards the eigenvalues of the potential V6. The scaled plots correspond to the convergence
diagrams using the scaling factor τ . a Uses a scaling factor of τ = 0.75. bUses a scaling factor of τ = 0.55

and α4 = 0.9. We then iterated this process, taking the first optimal parameter set as
an initial guess and taking steps of 0.01 in parameter space (Fig. 1).

We anticipate that further optimization of the transformation parameters will pro-
duce further numerical stability. However, finding the optimal combination is quite
costly, as we are optimizing a non-linear function with 4 input values. Finding an
efficient way to calculate the optimal parameters remains an open question. In our
calculations, we used α1 = 1.05, α2 = 1.30, α3 = 1.20 and α4 = 0.94. As can be
seen from Fig. 2, implementing the generalized transformation improves considerably
the numerical stability of the method. We performed the same procedure to find the
optimal parameter sets for other potentials V2, V3, V4, V5, and V6. Optimizing the
generalized transformation (35) for each potential gives six different parameter sets.
In each case, using the optimized parameter sets yields improved performance of the
DESCM that is similar to the V1 case.

To improve the stability of the method, we introduce a scaling factor leading to a
considerable increase in convergence.

Corollary 5.1 Scaling the transformed energy eigenvalue problem using x = τ y with

τ �= 0 will transform the computed eigenvalues by E = Ẽ

τ 2
where E is the original

eigenvalue and Ẽ is the energy eigenvalue of the scaled problem.

Proof Consider the potential V (x) =
∑n

j=−i
a j x j and the vector a := [a−i , a−i+1,

. . . , an] consisting of the coefficients of the potential. Consider also the vector x =
[x−i , x−i+1, . . . , xn]. Recognizing that the energy eigenvalues are functions of the
coefficients of the potential, we can thus write E(a).

We write the problem in the following form:

− ψ ′′(x) + (a · x)ψ(x) = E(a)ψ(x). (38)
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Fig. 2 The improved numerical stability of the DESCM for the potential V1. a Shows the convergence

of the method with φ1(x) = log
[
esinh(x) + 1

]
and φ2(x) = log

[
exp
(
α1eα2x − α3e−α4x )+ 1

]
over 100

iterations. b Compares the condition numbers of the different transformation for the generalized eigenvalue
problem. c Shows the convergence and stability of the generalized transformation following the introduction
of a scaling factor τ = 3.00 over 1000 iterations. d Shows the condition number of the scaled generalized
transformation

Implementing the change of variable x = τ y with τ ∈ R and τ �= 0, and using:

d2

dx2
ψ(τ y) = 1

τ 2

d2

dy2
ψ(y), (39)

leads to:
ψ ′′(τ y)

τ 2
+ (b · y)ψ(τ y) = E(b)ψ(τ y), (40)

where b = [τ−i ai , τ
−i+1a−i+1, . . . , τ

nan] and y = [y−i , y−i+1, . . . , yn].
If we let c = [τ−i+2ai , τ

−i+2a−i+1 · · · τ n+2an], then (40) becomes:

− ψ ′′(τ y) + c · y = E(c)ψ(τ y) = τ 2E(a)ψ(x). (41)
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Table 1 The number of convergent eigenvalues computed in 100 iterations for different transformations:
φ1(t) = log(exp(sinh(t)) + 1), and φ2(t) = log

[
exp
(
α1eα2x − α3e−α4x )+ 1

]

Potential φ1(t) τ = 1 φ1(t) τ = 1.75 φ2(t) τ = 1 φ2(t) τ = 1.75

V1(x) 8 22 22 36

V2(x) 9 23 20 35

V3(x) 8 20 19 37

V4(x) 9 22 20 34

The τ value denotes the scaling factor used in the calculations

We can recover the energy eigenvalues corresponding to a j by noticing that:

E(a) = E(c)
τ 2

, (42)

as desired. ��
The scaling vastly improves the number of convergent eigenvalues found by the

method.We fixed thematrix size at 201×201, and computed the number of convergent
eigenvalues with and without using the scaling factor for each transformation and we
report the substantial increase in the number of convergent eigenvalues found as can
be seen from Table 1. In Fig. 2, we used 1001× 1001 matrix illustrating the increased
stability of the method when the scaling factor is used.

In Table 1, we calculate the number of convergent eigenvalues in 100 iterations
for the potentials V1, V2, V3 and V4. For higher order eigenvalues, where the analytic
solution is not known, we use the relative error threshold of 5 × 10−12. We consider
a higher order eigenvalue to be found if the relative error approximation is within
the relative error threshold. Our choice of relative error threshold is influenced by the
accuracy of the eigensolvers in Matlab as well as the presence of round off error. In
this Table, the improvement resulting from utilizing the generalized transformation
and the introduction of the scaling factor is obvious.

In Table 2, we plot the evolution of the convergence for increasing matrix size for
the potential V1. We see convergence towards the known ground state eigenvalue as
well as the convergence towards the first and second excited states.

However, we would like to be able to compute arbitrarily many energy eigen-
values. This will require dealing with matrices of increasingly large size. Further,
these matrices become more and more ill-conditioned as they grow. In fact, for the
potential V1, when using the transformation φ1(x) = log

[
esinh(x) + 1

]
, numerical

blow ups occur for a 141 × 141 matrix and higher. We plot the condition number
of the generalized eigenvalue problem, and notice that the numerical blow ups occur
as the condition number of the eigenvalue problem passes 1016. This increase in the
condition number is to be expected as the energy eigenvalues of the system grow
without bound. The scaling factor presents a simple way to improve stability of the
method and is evidenced in Fig. 2. The Figure shows the improved convergence of
the transformation φ2(x) = log

[
exp
(
α1eα2x − α3e−α4x

)+ 1
]
when compared with

φ1(x) = log
[
esinh(x) + 1

]
. We also see the vastly improved stability of the scaled

transformation.
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Table 2 Numerical calculations for the ground states and first two excited states of the potential V1(x)

N E0(N ) E1(N ) E2(N )

10 −14.7499998222764 −4.09661939808125 1.13533983977096

15 −14.7499999935935 −4.09661597228020 1.13571953379622

20 −14.7499999989570 −4.09661597504977 1.13571957570939

25 −14.7499999997938 −4.09661597544138 1.13571957544272

30 −14.7499999999506 −4.09661597551624 1.13571957539198

35 −14.7499999999867 −4.09661597553405 1.13571957537878

40 −14.7499999999960 −4.09661597553543 1.13571957537729

45 −14.7500000000008 −4.09661597553923 1.13571957537739

50 −14.7499999999961 −4.09661597554020 1.13571957537189

Here we used the potential φ2 with the scaling factor τ = 1.00. (E0 = −14.75)

The refined DESCM provides increased convergence speed when compared with
the SESCM presented in [6]. To compare the two methods, we implement the SESCM
following the procedure in [6]. The improved convergence speed offered by the refined
DESCM is predicted in theoretical work done by Sugihara and others [25–27]. As we
have shown that the solution of the Schrödinger equation is well suited to the DESCM,
our results are remarkable. The convergence of both methods is plotted in Fig. 1. For
the potentials V5 and V6, we utilize the same single exponential transformation and
step size as proposed in [6]. Moreover, we show that the refinements presented in this
work also improve the convergence of the SESCM.

6 Conclusion

In this paper, we apply the DESCM method to the Schrödinger equation with an
anharmonic Coulombic potential. This potential presents several numerical difficul-
ties, including a singularity at x = 0. The DESCM proves to be a powerful choice for
computing the energy eigenvalues and produces convergence towards known eigenval-
ues quickly. Further, we show that for the Coulombic potential, the double exponential
transformation is the optimal transformation for an accurate computation of the eigen-
values. Further, we introduced an improvement of the numerical stability as well as
the convergence of the DESCM. The scaling factor that utilizes the symmetry of the
eigenvalues is, to our knowledge, a novel suggestion that vastly improves stability
and increases convergence. Our numerical results imply that the instability is due to
the problem becoming ill-conditioned for large matrix sizes. Future work will include
implementing preconditioning methods in the generalized eigenvalue problem as well
as exploring other methods of increasing stability.
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